# Data Management for XENON1T and South Pole Telescope

DOMA in Astronomy, Genomics and High Energy Physics Nov 16, 2017

### **Benedikt Riedel**

Lincoln Bryant Rob Gardner Judith Stephen University of Chicago





# **XENON1T**



### **XENON** collaboration



# **XENON1T Science**

- No idea what 95.4% of universe is made of
- Looking for Dark Matter candidate - Weakly Interactive Massive Particles (WIMP) through nuclear recoil on liquid Xenon
- WIMP nuclear recoil produces charge and time signature in the detector readout that can easily distinguish nuclear recoil from other interactions
- First results:

https://journals.aps.org/prl/abst ract/10.1103/PhysRevLett.119. 181301





# Xenon1T Storage and Processing Challenge

- Storage allocated at European Grid Infrastructure (EGI) and Open Science Grid (OSG) sites -Not enough storage at any one site for all the data
- Computing and storage on OSG and EGI sites through single interface for each
- Could not use Globus Online to automate transfer to/from EGI sites
- How to manage the data?



### Rucio

- Data Management software created by the ATLAS experiment at the LHC, used by XENON1T, AMS, and ATLAS
- Provides single interface to distributed data
- Automated replication of data through a "subscription" model, i.e. a site is "subscribed" to a certain data set
- Built with future in mind, i.e. scalable database infrastructure, "common" data transfer methods support (GridFTP, SRM, XrootD, S3, etc.), monitoring through ELK, etc.
- Somewhat ATLAS-centric features present; Development to accommodate other experiments on-going



# Xenon1T Data Management



### **XENON1T Statistics**

### **Rucio Statistics:**

- > 1.2M Files
- ~16k Datasets
- 9 storage endpoints
- 1887.5 TB of available storage
- 854.1TB of available storage used
- Adding 1.3 TB per day, 200+ files per hour
- > 115 GB per hour transferred

# **Future Plans**

### "Rucio as a Service"

- Rucio can run from Docker images
- Spawn up Rucio instances as needed for experiments and researchers
- Setup single central DB instance with sub-DB for each Rucio instance
- Creating OSG FTS instance

# **SPT Experiment**

- Microwave-Millimeter telescope located at the South Pole
- Upgrades in 2016/2017:
  - SPT 3G Third generation detectors installed
  - 10x detectors = 10x data rate
  - Added detection channel
  - New compute and storage hardware at South Pole and UChicago





### Science

- Cosmic Microwave Background: CMB power spectrum, CMB Lensing, CMB Polarization, Epoch of Reionization
- Galaxy Clusters: Cluster Cosmology, Cluster Catalog
- Galaxy Evolution: High-z strongly-lensed star-forming galaxies, Catalog of mm sources

# **Data Management Challenges**

### From the instrument to archival:

- Limited bandwidth/high latency between experiment and researchers
- Online data acquisition and on-site processing
- Transport buffering & archival or raw (precious) data
- On-going processing and analysis
- Accessing archival storage

### From central storage to OSG jobs:

- Single central store (for now)
- Filesystem limits
- Limits on GridFTP bandwidth

### **Nearline Data Infrastructure - South Pole**



- New Hardware in red (no Fry's down the road edition).
  - 4x Dell R730s:
    - 2x R730 for analysis work (HTCondor pool)
    - 1x R730 as hypervisor
    - 1x R730 hot spare
  - 2x Dell R330s: Storage controller + backup
  - 2x Dell MD1280s:
    - Primary Copy: ZFS pool, 42x 8 TB, NFS mounted to all R730s
    - Secondary Copy: JBOD, 28x 8 TB
  - o 2x UPSes, 6x PDUs
- Old hardware in green Part of online analysis HTCondor pool

### Transport & Processing: Pole to the US



### Data Infrastructure: Pole to OSG & NERSC

- Data Ingest and Archival Infrastructure:
  - spt-buffer:
    - VM with 4 TB disk attached
    - Total 40 day buffer
  - o /spt
    - Part of OSG Stash (CephFS)
    - rsync'ed from spt-buffer
  - Backup from spt-buffer to NERSC HPSS, partially automated



### Data Infrastructure for Software & Analysis

- Analysis Servers
  - "scott" & "amundsen"
  - Dell R630s
  - Login, interactive,
    Condor, JupyterHub OSG Connect Stash (CephFS)
  - o 10Gbps
  - /spt from OSG Stash
- 2x gridftp with bonded
  2x10 Gbps
- osg-cvmfs SPT OASIS Stratum-0



# **Future Changes**

# Moving away from CephFS to Ceph Object Store for raw data

- "Closer to the metal" No bottleneck from metadata server
- Built-in scalable file transfer protocol
- No more tiered storage Not necessarily required if running newest release
- A lot of momentum behind S3/Swift-like file transfer
- POSIX-like access through NFS