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Nature of this talk @

This talk isn't about how we manage data in HEP, but how we might.

» Therefore, it isn't a “how-to” talk but a “what-if" talk.

» If you have experience in this, | want to hear from you!
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Hierarchically nested columnar data

Rowwise — columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

|ogica| data (tGa, 1)y, (b,2), (¢,3), (4,491, [I, [(e,5), (£,6)11, [1, [[(g,7)]]
outer stops [ 3, 3, 4]
inner stops | 4, 4, 6, 7]
15t attribute [ a, b, c, d, e, f, g ]
2" attribute | 1, 2, 3, 4, 5, 6, 7]

» Each primitive attribute is in an array by itself, with no list boundaries.
» Stops array: cumulative number of items for some level at each closing bracket.
» Alternative representations:
» Offsets (Arrow): include starting index; can represent interval slices without copying.
» Starts and stops: starts, stops = offsets[:-1], offsets[l:]; can represent
union of interval slices without copying, even save out of order for indexed lookups.
» Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.

» Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.
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Although we know how to save and retrieve data in
columnar form, we still manage data as files.

Whether it's ROOT or Parquet, the file structure glues a set of columns together to be
downloaded, replicated, versioned, or migrated to colder storage as a unit.
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The reason columnar data is so useful is because each end-user analysis requires a
minority of the data columns.

> “Monojet analysis” only needs jet objects, but it needs jets constructed

anny: Aiffavant vaimvie dn ety cvictanenatioe

Columnar data lets us read relevant attributes from disk one at a time
(or with XRootD, over the network), but data management systems are
unaware of how to open up a ROOT file and operate on individual columns.
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> ..

Within each particle object, the kinematic variables (pr, 7, ¢, m) are needed the most,
with “isolation/tagging/matching/..." needed by different analyses to varying degrees.



. BE
What could we do if data management were column-aware? @

Case 1: serve the most desirable attributes from RAM or SSD and less desirable attributes
of the same dataset from disk or tape.

Currently, we make 2 or 3 levels of “slimmed” copies (AOD/MiniAOD/NanoAOD)
to serve with different latencies. Three sizes does not fit all, so individual analysis
groups make their own subsets (and have to find their own storage).
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Case 1: lower latency for popular columns

Same object-array mapping example:

logical data [(a,1), (B,2), (,3), (4,41, [1, [(,5), (5,6)11, [1, [[(g,7)]

[
outer stops [
inner stops | 4, 4, 6, 7
15t attribute |
2" attribute |

a, b, c, d, e, £, g
1, 2, 3, 4, 5, 6, 7

If the 2" attribute is more popular than the 15t attribute, raise the 2" attribute into
warmer cache (on the server).

To the degree that analysts’ interests overlap (e.g. the all-popular kinematic variables),
one copy in hot cache may be shared by all. This is impossible for private skims.



Case 2: overlapping dataset definitions

logical data  [[(z,1), (b,2), (¢,3), (4,41, [1, [(,5, (£,6)11, (1, [[(g,7)]]
outer stops [ 3, 3, 4]
inner stops [ 4, 4, 6, 7]
1t attribute [ 2, b, c, d, e, £, g
2" attribute (v1) | 1, 2, 3, 4, 5, 6, 7]
2" attribute (v2) [ o9, 9, 9, 9, 9, 9, 9 1
Dataset version 1 schema: Dataset version 2 schema:
List (stops = "outer stops", List (stops = "outer stops",
List (stops = "inner stops", List (stops = "inner stops",
Pair(first = "lst attribute", Pair (first = "1lst attribute",
second = "2nd attribute (v1)" second = "2nd attribute (v2)"

)))

)))

(Not all arrays can be combined into datasets; validity determined by provenance.)
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Case 3: zero-copy views of selections

logical data [(0(a, 1), (b,2), (c,3), (d,4)], [I, [(e,5), (£,6)1], [1, [[(g,7)]]

outer offsets [0, 3, 3, 4]

inner offsets (o, 4, 4, 6, 7]

15t attribute | 4, b, c, d, £, g ]

2" attribute | 1, 2, 3, 4, 5, 6, 7]
inner starts (v2) [ 0, 4 ]
inner stops (v2) | 1, 5 ]
outer starts (v2) (o, 2 ]
outer stops (v2) (2, 2 ]
logical data (v2) [[(a,1) 1, [(e,5) 11, 1

> inner starts/stops (v2) keeps only the first pair of each sublist: particle selection.

> outer starts/stops (v2) keeps only the first two sublists: event selection.
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Case 3: zero-copy views of selections

logical data [(0(a, 1), (b,2), (c,3), (d,4)], [I, [(e,5), (£,6)1], [1, [[(g,7)]]

outer offsets [0, 3, 3, 4]

inner offsets (o, 4, 4, 6, 7]

15t attribute | 4, b, c, d, £, g ]

2" attribute | 1, 2, 3, 4, 5, 6, 7]
inner starts (v2) [ 0, 4 ]
inner stops (v2) | 1, 5 ]
outer starts (v2) (o, 2 ]
outer stops (v2) (2, 2 ]
logical data (v2) [[(a,1) 1, [(e,5) 11, 1

> inner starts/stops (v2) keeps only the first pair of each sublist: particle selection.
> outer starts/stops (v2) keeps only the first two sublists: event selection.
» If a new 2"9 attribute is created, we can immediately update the selected data.
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Case 4: database-style indexing (only a sorting example)

logical data ([, 1), (b,2), (c,3), (4,41, [1, [(e,5), (£,0)11, [1, [[(g,7)]]
outer offsets [0, 3, 3, 4]
inner starts [0, 4, 4, 6 ]
inner stops (4, 4, e, 7 ]
15t attribute a, b, c, d, e, £, g
2" attribute | 1, 2, 3, 4, 5, 6, ]
15t attribute (v2) g, e, £, a, b, d
2" attribute (v2) | 7, 5, 6, 1, 2, 3, ]
inner starts (v2) (3, 1, 1, 0 ]
inner stops (v2) (7, 1, 3, 1 ]
logical data (v2) unchanged!
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» Different sublists can be sorted differently, e.g. muon attributes by max muon pr
per event and jet attributes by max jet pt per event.
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Case 4: database-style indexing (only a sorting example)

logical data  [[(z,1), (b,2), (¢,3), (4,41, [1, [(,5, (£,6)11, [1, [[(g,7)]]

outer offsets [0, 3, 3, 4]
inner starts [0, 4, 4, 6 ]
inner stops (4, 4, e, 7 ]

15t attribute [ 4, b, c, d, e, £, g

2" attribute 1, 2, 3, 4, 5, 6, 7]

15t attribute (v2) g, e, £, a, b, c, 1

2" attribute (v2) | 7, 5, 6, 1, 2, 3, 4 ]
inner starts (v2) (3, 1, 1, 0 ]
inner stops (v2) (7, 1, 3, 1 ]
logical data (v2) unchanged!

» Different sublists can be sorted differently, e.g. muon attributes by max muon pr
per event and jet attributes by max jet pt per event.
» Request for p7™°" > X AND p7i¢t > Y only touches one end of all the arrays.
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How might it be implemented?

This is not an Object-Relational Mapping (ORM): the order of the arrays is important
and they should be served in contiguous blocks.

— suggests array database (e.g. SciDB) or object store (e.g. Ceph)
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and they should be served in contiguous blocks.

— suggests array database (e.g. SciDB) or object store (e.g. Ceph)

Option 1: define an Object-Array Mapping (OAM), build an interpretive layer
around an object store, and translate HEP data into it.

Option 2: use ROOT's OAM and interpretive layer, but replace its file-backed
storage with the object store.

Option 2 is more limited (no start/stop arrays), but less needs to be invented and old
analysis scripts would function in the new system.
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ROOT I/O — ROOT object store @
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objects and subdirectories. many users, “home directories.”
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T

ROOT 1/O — ROOT object store

ROOT 1/0

» File accessed by a single user contains
objects and subdirectories.

» Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

> Users typically access a large number
of identically typed files.

ROOT object store

» A server-bound file view would have

many users, “home directories.”
Adopt object store's security model.
Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.
No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.
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Questions for HEP: any use-case concerns? Missing features?

Questions for others: does this look familiar? Do you have
experience with systems like this? If so, what worked /didn’t work?
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