
Managing data with columnar granularity

Jim Pivarski

Princeton University – DIANA-HEP

November 16, 2017

1 / 14

Nature of this talk

This talk isn’t about how we manage data in HEP, but how we might.

I Therefore, it isn’t a “how-to” talk but a “what-if” talk.

I If you have experience in this, I want to hear from you!

2 / 14

Columnar data

Serializing data in columns is an old
idea in HEP:

I 1989: Column-Wise-N-tuples
(CWN) in PAW

I 1996: “split” (columnar) C++
objects in ROOT

. . .

I 2002: MonetDB

I 2005: C-Store (Vertica)

I 2010: Google Dremel paper

I 2013: Apache Parquet

I 2016: Apache Arrow
3 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.

I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.

I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.

I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent
union of interval slices without copying, even save out of order for indexed lookups.

I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.

I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.

I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Hierarchically nested columnar data

Rowwise → columnar is a transposition for tabular data; nested data is more complex.

Example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

I Each primitive attribute is in an array by itself, with no list boundaries.
I Stops array: cumulative number of items for some level at each closing bracket.
I Alternative representations:

I Offsets (Arrow): include starting index; can represent interval slices without copying.
I Starts and stops: starts, stops = offsets[:-1], offsets[1:]; can represent

union of interval slices without copying, even save out of order for indexed lookups.
I Sizes: sizes = stops - starts; compressible, fill in parallel, but no O(1) lookup.
I Dremel/Parquet: “repetition level”; packed small integers, but no O(1) lookup.

4 / 14

Although we know how to save and retrieve data in
columnar form, we still manage data as files.

Whether it’s ROOT or Parquet, the file structure glues a set of columns together to be
downloaded, replicated, versioned, or migrated to colder storage as a unit.

5 / 14

Although we know how to save and retrieve data in
columnar form, we still manage data as files.

Whether it’s ROOT or Parquet, the file structure glues a set of columns together to be
downloaded, replicated, versioned, or migrated to colder storage as a unit.

5 / 14

Why is this a problem?

The reason columnar data is so useful is because each end-user analysis requires a
minority of the data columns.

I “Monojet analysis” only needs jet objects, but it needs jets constructed
many different ways to study systematics.

I “Boosted top search” needs jets with substructure variables.

I “Heavy flavor study” needs jets, electrons, and muons with isolation and
B-tagging variables.

I “Diphoton Higgs mass” needs photons, electrons for a veto, and
converted pair electrons.

I . . .

Within each particle object, the kinematic variables (pT , η, φ, m) are needed the most,
with “isolation/tagging/matching/. . . ” needed by different analyses to varying degrees.

Columnar data lets us read relevant attributes from disk one at a time
(or with XRootD, over the network), but data management systems are
unaware of how to open up a ROOT file and operate on individual columns.

6 / 14

Why is this a problem?

The reason columnar data is so useful is because each end-user analysis requires a
minority of the data columns.

I “Monojet analysis” only needs jet objects, but it needs jets constructed
many different ways to study systematics.

I “Boosted top search” needs jets with substructure variables.

I “Heavy flavor study” needs jets, electrons, and muons with isolation and
B-tagging variables.

I “Diphoton Higgs mass” needs photons, electrons for a veto, and
converted pair electrons.

I . . .

Within each particle object, the kinematic variables (pT , η, φ, m) are needed the most,
with “isolation/tagging/matching/. . . ” needed by different analyses to varying degrees.

Columnar data lets us read relevant attributes from disk one at a time
(or with XRootD, over the network), but data management systems are
unaware of how to open up a ROOT file and operate on individual columns.

6 / 14

Why is this a problem?

The reason columnar data is so useful is because each end-user analysis requires a
minority of the data columns.

I “Monojet analysis” only needs jet objects, but it needs jets constructed
many different ways to study systematics.

I “Boosted top search” needs jets with substructure variables.

I “Heavy flavor study” needs jets, electrons, and muons with isolation and
B-tagging variables.

I “Diphoton Higgs mass” needs photons, electrons for a veto, and
converted pair electrons.

I . . .

Within each particle object, the kinematic variables (pT , η, φ, m) are needed the most,
with “isolation/tagging/matching/. . . ” needed by different analyses to varying degrees.

Columnar data lets us read relevant attributes from disk one at a time
(or with XRootD, over the network), but data management systems are
unaware of how to open up a ROOT file and operate on individual columns.

6 / 14

Why is this a problem?

The reason columnar data is so useful is because each end-user analysis requires a
minority of the data columns.

I “Monojet analysis” only needs jet objects, but it needs jets constructed
many different ways to study systematics.

I “Boosted top search” needs jets with substructure variables.

I “Heavy flavor study” needs jets, electrons, and muons with isolation and
B-tagging variables.

I “Diphoton Higgs mass” needs photons, electrons for a veto, and
converted pair electrons.

I . . .

Within each particle object, the kinematic variables (pT , η, φ, m) are needed the most,
with “isolation/tagging/matching/. . . ” needed by different analyses to varying degrees.

Columnar data lets us read relevant attributes from disk one at a time
(or with XRootD, over the network), but data management systems are
unaware of how to open up a ROOT file and operate on individual columns.

6 / 14

What could we do if data management were column-aware?

Case 1: serve the most desirable attributes from RAM or SSD and less desirable attributes
of the same dataset from disk or tape.

Currently, we make 2 or 3 levels of “slimmed” copies (AOD/MiniAOD/NanoAOD)
to serve with different latencies. Three sizes does not fit all, so individual analysis
groups make their own subsets (and have to find their own storage).

Case 2: define datasets with overlapping sets of physical columns.

For instance, version 1 has incorrect jet energy corrections; version 2 is just like it
but with different jet energies. Versions 1 and 2 should share the same physical
storage for all other columns. (Currently, users pass around correction recipes!)

Case 3: provide zero-copy views of selected particles or events through stencils/bitmaps.

Currently, users make “skimmed” copies, which use more space and can’t benefit
from version updates such as the jet energy correction example above.

Case 4: speed up filtering with database-style indexing.

7 / 14

What could we do if data management were column-aware?

Case 1: serve the most desirable attributes from RAM or SSD and less desirable attributes
of the same dataset from disk or tape.

Currently, we make 2 or 3 levels of “slimmed” copies (AOD/MiniAOD/NanoAOD)
to serve with different latencies. Three sizes does not fit all, so individual analysis
groups make their own subsets (and have to find their own storage).

Case 2: define datasets with overlapping sets of physical columns.

For instance, version 1 has incorrect jet energy corrections; version 2 is just like it
but with different jet energies. Versions 1 and 2 should share the same physical
storage for all other columns. (Currently, users pass around correction recipes!)

Case 3: provide zero-copy views of selected particles or events through stencils/bitmaps.

Currently, users make “skimmed” copies, which use more space and can’t benefit
from version updates such as the jet energy correction example above.

Case 4: speed up filtering with database-style indexing.

7 / 14

What could we do if data management were column-aware?

Case 1: serve the most desirable attributes from RAM or SSD and less desirable attributes
of the same dataset from disk or tape.

Currently, we make 2 or 3 levels of “slimmed” copies (AOD/MiniAOD/NanoAOD)
to serve with different latencies. Three sizes does not fit all, so individual analysis
groups make their own subsets (and have to find their own storage).

Case 2: define datasets with overlapping sets of physical columns.

For instance, version 1 has incorrect jet energy corrections; version 2 is just like it
but with different jet energies. Versions 1 and 2 should share the same physical
storage for all other columns. (Currently, users pass around correction recipes!)

Case 3: provide zero-copy views of selected particles or events through stencils/bitmaps.

Currently, users make “skimmed” copies, which use more space and can’t benefit
from version updates such as the jet energy correction example above.

Case 4: speed up filtering with database-style indexing.

7 / 14

What could we do if data management were column-aware?

Case 1: serve the most desirable attributes from RAM or SSD and less desirable attributes
of the same dataset from disk or tape.

Currently, we make 2 or 3 levels of “slimmed” copies (AOD/MiniAOD/NanoAOD)
to serve with different latencies. Three sizes does not fit all, so individual analysis
groups make their own subsets (and have to find their own storage).

Case 2: define datasets with overlapping sets of physical columns.

For instance, version 1 has incorrect jet energy corrections; version 2 is just like it
but with different jet energies. Versions 1 and 2 should share the same physical
storage for all other columns. (Currently, users pass around correction recipes!)

Case 3: provide zero-copy views of selected particles or events through stencils/bitmaps.

Currently, users make “skimmed” copies, which use more space and can’t benefit
from version updates such as the jet energy correction example above.

Case 4: speed up filtering with database-style indexing.
7 / 14

Case 1: lower latency for popular columns

Same object-array mapping example:

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

If the 2nd attribute is more popular than the 1st attribute, raise the 2nd attribute into
warmer cache (on the server).

To the degree that analysts’ interests overlap (e.g. the all-popular kinematic variables),
one copy in hot cache may be shared by all. This is impossible for private skims.

8 / 14

Case 2: overlapping dataset definitions

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute (v1) [1, 2, 3, 4, 5, 6, 7]

2nd attribute (v2) [9, 9, 9, 9, 9, 9, 9]

Dataset version 1 schema:

List(stops = "outer stops",
List(stops = "inner stops",

Pair(first = "1st attribute",
second = "2nd attribute (v1)"

)))

Dataset version 2 schema:

List(stops = "outer stops",
List(stops = "inner stops",
Pair(first = "1st attribute",

second = "2nd attribute (v2)"
)))

(Not all arrays can be combined into datasets; validity determined by provenance.)

9 / 14

Case 3: zero-copy views of selections

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer offsets [0, 3, 3, 4]

inner offsets [0, 4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

inner starts (v2) [0, 4]

inner stops (v2) [1, 5]

outer starts (v2) [0, 2]

outer stops (v2) [2, 2]

logical data (v2) [[(a,1)], [(e,5)]], []

I inner starts/stops (v2) keeps only the first pair of each sublist: particle selection.

I outer starts/stops (v2) keeps only the first two sublists: event selection.

I If a new 2nd attribute is created, we can immediately update the selected data.

10 / 14

Case 3: zero-copy views of selections

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer offsets [0, 3, 3, 4]

inner offsets [0, 4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

inner starts (v2) [0, 4]

inner stops (v2) [1, 5]

outer starts (v2) [0, 2]

outer stops (v2) [2, 2]

logical data (v2) [[(a,1)], [(e,5)]], []

I inner starts/stops (v2) keeps only the first pair of each sublist: particle selection.

I outer starts/stops (v2) keeps only the first two sublists: event selection.

I If a new 2nd attribute is created, we can immediately update the selected data.

10 / 14

Case 4: database-style indexing (only a sorting example)

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer offsets [0, 3, 3, 4]

inner starts [0, 4, 4, 6]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

1st attribute (v2) [g, e, f, a, b, c, d]

2nd attribute (v2) [7, 5, 6, 1, 2, 3, 4]

inner starts (v2) [3, 1, 1, 0]

inner stops (v2) [7, 1, 3, 1]

logical data (v2) unchanged!

I Different sublists can be sorted differently, e.g. muon attributes by max muon pT
per event and jet attributes by max jet pT per event.

I Request for pT
muon > X AND pT

jet > Y only touches one end of all the arrays.

11 / 14

Case 4: database-style indexing (only a sorting example)

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer offsets [0, 3, 3, 4]

inner starts [0, 4, 4, 6]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

1st attribute (v2) [g, e, f, a, b, c, d]

2nd attribute (v2) [7, 5, 6, 1, 2, 3, 4]

inner starts (v2) [3, 1, 1, 0]

inner stops (v2) [7, 1, 3, 1]

logical data (v2) unchanged!

I Different sublists can be sorted differently, e.g. muon attributes by max muon pT
per event and jet attributes by max jet pT per event.

I Request for pT
muon > X AND pT

jet > Y only touches one end of all the arrays.

11 / 14

Case 4: database-style indexing (only a sorting example)

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer offsets [0, 3, 3, 4]

inner starts [0, 4, 4, 6]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

1st attribute (v2) [g, e, f, a, b, c, d]

2nd attribute (v2) [7, 5, 6, 1, 2, 3, 4]

inner starts (v2) [3, 1, 1, 0]

inner stops (v2) [7, 1, 3, 1]

logical data (v2) unchanged!

I Different sublists can be sorted differently, e.g. muon attributes by max muon pT
per event and jet attributes by max jet pT per event.

I Request for pT
muon > X AND pT

jet > Y only touches one end of all the arrays.

11 / 14

How might it be implemented?

This is not an Object-Relational Mapping (ORM): the order of the arrays is important
and they should be served in contiguous blocks.

→ suggests array database (e.g. SciDB) or object store (e.g. Ceph)

Option 1: define an Object-Array Mapping (OAM), build an interpretive layer
around an object store, and translate HEP data into it.

Option 2: use ROOT’s OAM and interpretive layer, but replace its file-backed
storage with the object store.

Option 2 is more limited (no start/stop arrays), but less needs to be invented and old
analysis scripts would function in the new system.

12 / 14

How might it be implemented?

This is not an Object-Relational Mapping (ORM): the order of the arrays is important
and they should be served in contiguous blocks.

→ suggests array database (e.g. SciDB) or object store (e.g. Ceph)

Option 1: define an Object-Array Mapping (OAM), build an interpretive layer
around an object store, and translate HEP data into it.

Option 2: use ROOT’s OAM and interpretive layer, but replace its file-backed
storage with the object store.

Option 2 is more limited (no start/stop arrays), but less needs to be invented and old
analysis scripts would function in the new system.

12 / 14

How might it be implemented?

This is not an Object-Relational Mapping (ORM): the order of the arrays is important
and they should be served in contiguous blocks.

→ suggests array database (e.g. SciDB) or object store (e.g. Ceph)

Option 1: define an Object-Array Mapping (OAM), build an interpretive layer
around an object store, and translate HEP data into it.

Option 2: use ROOT’s OAM and interpretive layer, but replace its file-backed
storage with the object store.

Option 2 is more limited (no start/stop arrays), but less needs to be invented and old
analysis scripts would function in the new system.

12 / 14

ROOT I/O → ROOT object store

ROOT I/O

I File accessed by a single user contains
objects and subdirectories.

I Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

I Users typically access a large number
of identically typed files.

ROOT object store

I A server-bound file view would have
many users, “home directories.”

I Adopt object store’s security model.

I Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.

I No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

I Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.

13 / 14

ROOT I/O → ROOT object store

ROOT I/O

I File accessed by a single user contains
objects and subdirectories.

I Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

I Users typically access a large number
of identically typed files.

ROOT object store

I A server-bound file view would have
many users, “home directories.”

I Adopt object store’s security model.

I Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.

I No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

I Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.

13 / 14

ROOT I/O → ROOT object store

ROOT I/O

I File accessed by a single user contains
objects and subdirectories.

I Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

I Users typically access a large number
of identically typed files.

ROOT object store

I A server-bound file view would have
many users, “home directories.”

I Adopt object store’s security model.

I Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.

I No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

I Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.

13 / 14

ROOT I/O → ROOT object store

ROOT I/O

I File accessed by a single user contains
objects and subdirectories.

I Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

I Users typically access a large number
of identically typed files.

ROOT object store

I A server-bound file view would have
many users, “home directories.”

I Adopt object store’s security model.

I Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.

I No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

I Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.

13 / 14

ROOT I/O → ROOT object store

ROOT I/O

I File accessed by a single user contains
objects and subdirectories.

I Segments of columnar arrays called
“baskets” are located in the file,
identified by file seek positions.

I Users typically access a large number
of identically typed files.

ROOT object store

I A server-bound file view would have
many users, “home directories.”

I Adopt object store’s security model.

I Same baskets would be identified by
object store keys. No fragmentation
concerns and objects get replicated.

I No artificial boundaries in the dataset:
only segmented into baskets, which
are hidden from users.

I Need to develop new interfaces to
share basket data among versioned
datasets and track provenance.

13 / 14

Questions for HEP: any use-case concerns? Missing features?

Questions for others: does this look familiar? Do you have

experience with systems like this? If so, what worked/didn’t work?

14 / 14

