Deep Learning Astronomical Survey Data

Shawfeng Dong

shaw@ucsc.edu

University of California, Santa Cruz

2017 DOMA Workshop, New York, NY

Challenges of Big Data in Astronomy

Sloan Digital Sky Survey (SDSS)

200 GB per night 40 TB raw data ➡ 120 TB processed 35 TB catalogs

Mikulski Archive for Space Telescopes (MAST)

185 TB of images25 TB/year ingest rate100 TB/year retrieval rate

Large Synoptic Survey Telescope (LSST)

15 TB per night for 10 years100 PB image archive20 PB final database catalog

Square Kilometer Array (SKA)

1 EB per day (> internet traffic today) 100 PF processing power ~1 EB processed data per year

Sloan Digital Sky Survey "The Cosmic Genome Project"

Spectroscopic redshift survey

Massive Data

200 GB per night

- 40 TB raw data m 120 TB processed
- 35 TB catalogs

Data is publicly accessed

840 million web hits in 9 years, now >1 billion

- 4,000,000 distinct users vs. 15,000 astronomers
- Basis for >20,000 scientific papers
- More citations than any telescope including Hubble

SDSS Telescope (2.5 meter mirror)

SDSS Telescope 2.5 meter mirror

Large Synoptic Survey Telescope

□ Wide field and deep

- 27,000 square degrees (wide)
- 100 200 square degrees (deep)
- 10 years
- Broad range of science
 - Dark energy & dark matter
 - Galactic structure
 - Census of the Solar system
 - Transient universe
- □ 3.2-gigapixel camera
 - 9.6 square degrees FOV
 - 6 filters (UGRIZY)

Processing the data flow from LSST

A 15-second exposure every 20 seconds

The data volume associated with this cadence is unprecedented!

- one 6-gigabyte image every 20 seconds
- 15 terabytes of raw scientific image data per night
- 100-petabyte final image data archive
- 20-petabyte final database catalog
- 2 million real time events per night every night for 10 years
- 1000 new supernovas discovered every night!

□ Managing and effectively data mining the enormous output is expected to be the most technically difficult part of the project

Machine Learning in Astronomy

Astronomy is rife with tasks demanding human labor
 Source identification
 Continuum fitting
 Line identification
 Etc.

Machine Learning

Can perform many of these tasks
Auto-magically, repeatedly, better!

Deep Learning

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun

Sander Dieleman used deep learning to predict **Galaxy Zoo** nearby galaxy image classifications with 99% accuracy, winning 2014 Kaggle competition

Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey, *Willett, et al.* (2013) Rotation-invariant convolutional neural networks for galaxy morphology prediction, *Dieleman, et al.* (2015)

Huertas-Company et al. used CNN to classify **CANDELS*** galaxy images

A Catalog of Visual-like Morphologies in the 5 CANDELS Fields Using Deep Learning, Huertas-Company et al. (2015)

Mass assembly and morphological transformations since z ~ 3 from CANDELS, Huertas-Company et al. (2016)

*CANDELS: Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

The Damped Lyα Systems (DLAs)

Wolfe+86 11 11 Q1337+113 QSO 10 Lyα 8 ц́ QSO Lyβ 6 RELATIVE LLS DLA 2 0 3200 3600 4000 4400 4800 5200 WAVELENGTH (Å)

DLA Analysis (Old School)

Wolfe+95

Visual inspection (first error array!); by-eye N_{HI} fitting

DLA Analysis (Early SDSS)

Visual inspection (first error array!); by-eye N_{HI} fitting

Deep Learning of DLAs

Deep Learning of Quasar Spectra to Discover and Characterize Damped Lya Systems, Parks, Prochaska, Dong, & Cai (2017)

Multi-task Learning:

Three labels at each pixel:

Combined loss function for all three labels

- Classification;
 Localization (i.e., redshift);
- 3). HI column density

$$\begin{aligned} \mathcal{L}_c &= -y_c \log(\hat{y}_c) - (1 - y_c) \log(1 - \hat{y}_c) \\ \mathcal{L}_o &= (y_o - \hat{y}_o)^2 \\ \mathcal{L}_h &= \left(\frac{y_c}{y_c + \epsilon}\right) (y_h - \hat{y}_h)^2 \end{aligned}$$

CNN Training

200,000 sightlines of DLAs injected into DLA-free quasar spectra from the SDSS-DR5. By-hand addition of additional training sets: high N_н, SLLS

CNN Validation

□11,110 DLAs held back

- Matched 99% of these to within |dz| < 0.015
- ~300 false negatives
- Primarily SLLS
 Overlapping DLAs
 74 'false positives'
 Some may be real
 - Overlapping DLAs

CNN Validation

Precise DLA measurements without Quantum Mechanics!!

DLA Results (CNN + BOSS)

found ~19,000 DLAs with z>2

Machine Learning in Astronomy

- Astronomy is rife with tasks demanding human labor
 Source identification
 Continuum fitting
 Line identification
 - o Etc.

Machine Learning

Can perform many of these tasks
Auto-magically, repeatedly, better!

