Theoretical aspects of
top-pair production cross sections

Top Quark Physics at the Precision Frontier
16-17 January 2018, Fermilab

Andrew Papanastasiou
Cavendish Laboratory, University of Cambridge

European
Research
Council

UNIVERSITY OF
CAMBRIDGE

Science & Technology

rC
@ Facilities Council BT

Andrew Papanastasiou theoretical aspects of tt



Outline of talk

> tt production at high precision (stable tops)

scale choices

fast evaluations of NNLO
NNLO-QCD+NLO-EW combinations
preliminary look at new observables

vV vy Vvyy

> Predictions for the physical final states of ¢

» NWA: toward NNLO production & decay
» NLO predictions for offshell ¢t and ttj
» NLO-PS for offshell tt
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Precision in Production

NNLO-QCD Czakon,Heymes,Mitov '15,'16

> fully-differential NNLO-QCD predictions for ¢t production

> NNLO corrections often non-trivial in shape
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Precision in Production

NNLO-QCD: scale choices Czakon,Heymes, Mitov '16

> dynamical scales crucial in multi-TeV regimes, however, how to pick
dynamical scale? (typically large differences between choices)

> choice of functional form for pg, g scales is by no means unique, can
vary from observable to observable

> ‘optimal choice’ is often subject of debate

Study of scale dependence through NNLO [1606.03350] :

> for a given distribution, decide on optimal scale based on criterion of
best (fastest) perturbative convergence, i.e., pick scale that leads to
smaller K-factors at NLO and NNLO, across full ranges of distributions.

> large number of choices considered

> scales picked according to this principle appear to lead to smallest scale
uncertainties for tt

> ‘optimal’ choices used for NNLO studies that follow
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Precision in Production

NNLO-QCD: scale choices Czakon,Heymes, Mitov '16
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> the following scales were found to be optimal:
MT/23 for Pty P1,E5 PT,avt
Hr /4, for all others studied (y;, muz, pr 7. Yit)

> given scale uncertainty under control, in TeV-region leading uncertainty
now comes from PDFs (different sets giving v. different results!)
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Precision in Production

Ease of use: fastNLO tables Czakon,Heymes, Mitov '17

» typically O(10%) CPU hours for a single NNLO calculation (for fixed
observables, scales, m;, PDFs)

> option to compute distributions quickly with updated/improved
PDF sets preferrable to re-running each time a new set is released

> applications such as PDF fitting, as or m; extractions require
results computed with O(10 — 10*) PDFs ...

= require flexible storage format for fast evaluations

» fastNLO [Brizger et al] has been interfaced to STRIPPER

v PDF and «a; independent storage = fast, O(seconds), recalculation
of distributions

> fastNLO first tables produced for the central (dynamical) scale
choice, as prescribed in [1606.03350]
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Precision in Production

Ease of use: fastNLO tables Czakon,Heymes, Mitov '17

» same MC sample used for direct calculation and filling of tables

v interpolation error < 0.1%, much smaller than MC error of NNLO
calculation < 0.5%

v all results checked against statistically independent calculations
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> repository of results & tables for pr avt, Yavt, Ye, Mt
www.precision.hep.phy.cam.ac.uk

» soon: tables for different masses, 2D observables
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Precision in Production

NNLO QCD + NLO EW

> until recently no consistent combination of NNLO QCD with EW
corrections

» EW-corrections naively of same order of magnitude as
NNLO-QCD: a? ~
» NLO-EW corrections tend to be small for total cross section

> large EW-Sudakov logarithms could have a large impact in tails of
distributions, and in TeV-regime kinematics

> Work Of [1705.04105] [Czakon,Heymes,Mitov, Pagani, Tsinikos, Zaro |

» ‘Complete’ NLO (O(a3, a2a, asa?, o)) contributions
combined with NNLO-QCD (O(a?)) corrections

> assessment of overall size of EW corrections to pr ¢, mu, ye,
y7 for LHC 13 TeV

» study effects of different photon PDFs
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Precision in Production

Czakon,Heymes, Mitov,

NNLO QCD + NLO EW Pagani, Tsinikos,Zaro '17
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> pr.: EW corrections grow from +2% — -25% in range [0, 3] TeV
> pr:: EW corrections as significant as NNLO-QCD scale uncertainty

> smaller effects for m
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Precision in Production

Czakon,Heymes, Mitov,

NNLO-QCD+NLO-EW: asymmetries Pagani, Tsinikos,Zaro '17
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» NNLO-QCD corrections significant, increasing total asymmetry, and
asymmetry in most bins of m,;

» EW corrections: positive, increasing AgNLO by ~ 13-20% differentially

> very challenging numerically due to large cancellations in numerator
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Precision in Production

Czakon,Heymes, Mitov,

NNLO-QCD+NLO-EW: asymmetries Pagani, Tsinikos, Zaro '17
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" N(Ay>0)+ N(Ay < 0)
» NNLO-QCD: positive 10-30% corrections
» EW corrections: positive, increasing ANNEO by ~ 15-20% differentially

» EW corrections: slightly increase size of scale uncertainty
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Precision in Production

NNLO-QCD: double-differential predictions

>
>
>
>

CMS recently published double-differential 8TeV measurements [1703.01630]
stress-test theory predictions and modelling
preliminary: NNLO predictions for distributions for CMS bins, 8 TeV

= Hr /4, produced fastNLO tables
[Czakon,Mitov,AP — in preparation]

LHC 8 TeV, CMS bins Jto = Hr/4, NNPDF3.0
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Precision in Production

NNLO-QCD: double-differential predictions

>
>
>
>

CMS recently published double-differential 8TeV measurements [1703.01630]
stress-test theory predictions and modelling
preliminary: NNLO predictions for distributions for CMS bins, 8 TeV

= Hr /4, produced fastNLO tables
[Czakon,Mitov,AP — in preparation]
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Moving towards physical final states

The top quark is not stable

v

due to its large width, T';, top quark decays before hadronizing ...

v

top quarks not directly measured — presence always inferred through
their decay products: leptons, (b)jets, missing energy

v

To compare to stable top predictions, experiments have to

> extrapolate their measurements from fiducial to inclusive
» extrapolate/model from particle-level to top-quark partons

v

this back-modelling depends on Monte Carlo

> these steps currently use MCs that treat top decay at LO

= no reliable estimate of uncertainty on shape & normalization
due to higher order corrections to decay

» each MC generator has a different shower
= is the top 'parton’ one arrives at is a MC-dependent object?
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Predictions for physical final states

Including the top quark decay

Two mainstream ways of calculating, when top decay is included:
» Narrow-width approximation (NWA), p(t)? = m?, Ty — 0 limit
» production / decay of onshell tops completely factorize
» compute higher-order corrections to prod. & decay separately
> for large class of observables NWA is an excellent approx
(error ~ O(T'y/my))
» Offshell, p(t)? # m?

» diagrams involving top quarks only form a subset of all required
contributions

» since there are both resonant and non-resonant contributions,
notion of a physical, onshell top-quark parton loses meaning

» finite-width effects vital in certain regions of phase space, e.g.
edge of My, distribution!
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Predictions for physical final states

Predictions (fixed order)

Key features:
> predictions built from matrix-elements with bs & leptons in
final state
> consistently include higher order corrections in production &
decay

Measurements can be directly compared to predictions from these codes!
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Predictions for physical final states

Narrow-width approximation (NWA)

| | [Bernreuther,Si;
NLO | | I\BAe!lnikov, slchulze;
i i adger et al;
prOdUCtlon | | Campbell, Ellis]
| | [Bernreuther et al;
NLO | | Campbell et al;
decay ! ! Melnikov, Schulze ... ]

[Melnikov,Schulze '09]

> NLO corrections to decay, in general,
change normalization and shape
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» decay corrections enhanced when cuts
imposed on top-quark decay products
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Predictions for physical final states

Narrow-width approximation (NWA)
NNLO production

D LN L

NNLO decay

e e e e e

NLO- productlon x NLO-decay

e e e e e

(also: NLO-tdecay x NLO-tdecay)
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Predictions for physical final states

NWA: towards NNLO, di-lepton channel

» tt production and decay [Gao,AP '17]

» NNLO-decay [Gao, Li, Zhu; Caola Melnikov '12] included exactly

» NLO-prod x NLO-dec included exactly [cao, AP 17]

» NNLO-prod: soft-gluon approx. [Broggio, AP, Signer '14]
(approximation compares well against differential LHC8 exact NNLO

results of [Czakon et al] )

Code to produce results is a parton-level Monte Carlo, which produces
results at LO, NLO and NNLO.

So far, only (direct) leptonic decays of W-bosons included.

Predictions for any IR-safe observable constructed from final state
leptons and (b)jets, in fiducial regions, can be made.
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Predictions for physical final states

Fiducial cross sections: di-lepton channel Gao, AP '17

Two different fiducial volumes investigated:

> CMS (8 TeV): require 2 bjets, pr(Jy) > 25 GeV, |n(Jy)| < 2.5,
pr(IF) > 25 GeV, |n(I*)| < 2.5

» ATLAS (8 TeV): pr(IF) > 25(30) GeV, |n(i*)| < 2.5(2.4)
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> corrections beyond NLO important

v/ improvement in agreement between theory and measurements
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Predictions for physical final states Gao, AP '17

Fiducial cross sections: decay corrections vary with cuts

Look at breakdown of higher-order corrections in decay (as % of fid xs):

ATLAS: CMS:

o =—0.25% » o =—74%  eNLO

>0 = -0.10% » 52 =—29%  €NNLO

> 6}(33())dxdec = +OO5% > 6}(33())dxdec = +16% = NNLO
(Note: 601 | ~ +20%, 6{2) ; ~ +10%)

What we learn:

> including higher-orders in decay generally reduces fid. cross section
> size/impact of corrections in decay depend on cuts on final states

(for good theory/data agreement in both ATLAS and CMS fiducial
volumes, must include corrections in production & decay)

> NNLO-decay + NLO-prod x NLO-decay corrections, are small (large
cancellation in sum)
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Predictions for physical final states

Towards NNLO production & decay Gao, AP '17

Comparisons also made differentially:
my = 173.3 GeV
wE [me/2,2my]

» CMS 8 TeV: [1505.04480,1510.03072]
MMHT2014 PDFs

> ATLAS 8 TeV: [ATLAS-CONF-2017-044]

LHC 8 TeV, ATLAS setup

LO [SINLO EWINNLO i CMS
1
T T T T

LO CINLO MENNLO HH ATLAS
T T

LHC 8 TeV, CMS setup
1.

05 L i | i 5
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o 50
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> good agreement in norm. & shape with NNLO predictions

> exploit these for applications, e.g. mP°*-extraction from o

fid.
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Predictions for physical final states

Offshell state-of-the-art: di-lepton

> B . + — = 17 [5FS: Bevilaqua et al, Denner et al, Heinrich et al
NLO-QCD corrections to e Velt Vﬂbb +X 4FS: Frederix, Cascioli et al]

» NLO-EW corrections to €+V6'U,_Z7Mbl; + X [Denner,Pellen "17]

W s &’
b 9 b 9 b
t t P W

» NLO-QCD corrections to et veu™7,bbj + X fowwwor s \ g

[Bevilaqua,Hartando,Krauss,Worek '15,16'] 9 oo b groooy b oo
w- ¥ 5;\0

9

> offshell & nonresonant effects small

107 Fxio — Full S
B ~ for large class of obs.
= 1)
< % > excellent performance of NWA,
45 g when NLO corrections to prod &
o ! decay included
e
W e > Notice: NLO-production with
Hr [GeV] Hr [GeV] LO-decay not a good approx. of

[Bevilaqua,Hartando, Krauss,Schulze, Worek '17] fU” reSUlt (Shape)
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Predictions for physical final states

Offshell state-of-the-art: di-lepton

> NLO-QCD corrections to €+l/e,LL_DHbB + X [5FS: Bevilaqua et al, Denner et al, Heinrich et al

4FS: Frederix, Cascioli et al]

» NLO-EW corrections to €+V6'U,_Z7Mbl; + X [Denner,Pellen "17]
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g b 9 b 9 b

t t I Wi Ve

» NLO-QCD corrections to et veu™7,bbj + X fowwwor s \ ~

[Bevilaqua,Hartando, Krauss,

Worek '15,16']
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near kinematic thresholds / edges
0 L of distributions, offshell effects

50| K
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- > good description of these phase
i space regions relies on top kept
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[Bevilaqua,Hartando, Krauss,Schulze, Worek '17] Capture these effects)
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Predictions for physical final states

Offshell state-of-the-art: lepton+jets Denner, Pellen 17

» NLO-QCD corrections to /Ff/ubgjj + X recently computed

b,

== 10
== NLO

» K-factors can be non-trivial
& large (& different to
di-lepton channel in general)

> size of NLO corrections
sensitive on event selection
(particularly treatment of
- B T ™ light jets)
> a comparison with NWA results [Melnikov,Schulze; Campbell, Eliis (McFM)] would be
very useful at this point
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Predictions for physical final states

NWA & Offshell ¢t matched to parton showers

> Aim: match NLO matrix elements for e+1/e/fz7ubl_) + X to parton
showers

> despite top quarks not being a final state in the matrix elements, an
‘intermediate top’ must be written in event file if one wants the PS to
preserve the resonance mass

> resonance-aware matching to parton showers for tt (NWA & offshell)
have been developed in the POWHEG framework over last couple of years

> two state-of-the-art generators:
» “ttb_NLO_dec”: NWA, NLO corrections in prod. & decay, and LO
approximation of finite-width effects [campbell,Eliis,Nason, Re "14]
» "“bb4l"”: fully offshell, NLO corrections to resonant & nonresonant
contributions [Jeso, Nason '15; Jezo, Lindert, Nason, Oleari, Pozzorini '16]
> study differences between these and the older (but routinely used today):

» “hvq": NWA, NLO corrections in production only [Frixione Nason Ridolfi '07]
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Predictions for physical final states

JeZo, Lindert, Nason,

NWA & Offshell ¢t matched to parton showers Oleari, Pozzorini '16
Taken from T. JeZo's talk @ Top2017

8 TeV/ b_bbar_41 — - 8 TeV bbdl ——
1] tth_NLO_dec —e— _ 1L hvq
hvg o : hvq#+ST wtch DS

1 hvq#+ST_wtch DR—s—

POWHEG-BOX-RES-+0penLoops

81 e e—e——p o 8L T
. . . . , . . I
150 160 170 180 190 20 150 160 170 180 190 20
My, [GeV] Moy, [GeV]

> sizeable differences in shape (10-50%) and normalization (~10%)
between bb41l and hvq generators

» milder differences between bb4l and ttb_NLO_dec generators

> even though offshell effects are modelled (~LO) in hvq and
ttb_NLO_dec generators, to get close to full result when using an onshell
approx., it is imperative to include corrections in decay

> radiative corrections in decay impact bjet dynamics

Andrew Papanastasiou theoretical aspects of tt



The power of tops

Czakon,Hartland,Mitov,

Application: probing high-z gluon Nocera,Rojo '16

> differential top-pair production data sensitive to large-z gluon PDF

plo(x,Q).do/dyg]
Q=100 GeV

plg(x,Q),do/dpi]
Q=100 GeV

0.5

-0.5

ATLAS & CMS 8 TeV bins

0.001 0.01 0.1 1 0.001 0.01 0.1 1
X

ATLAS & CMS 8 TeV. bins

X

> [1611.08609] performed a global fit (in NNPDF framework) using
NNLO ¢t predictions to study impact of diff. top data on PDF fit

> baseline fit data: ~ NNPDF3.0, without o,; & inclusive-jet data
> fit with top data: included (8TeV, [+jets channel)

» ATLAS normalized y; distribution
» CMS normalized y,; distribution
» ATLAS & CMS measurement of oy
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The power of tops
Application: probing high-z gluon
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Baseline
+ top-quark differential
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e
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>

v

Czakon,Hartland,Mitov,
Nocera,Rojo '16

red: baseline-fit PDFs (NNPDF)
blue: PDFs after select top data included

bands: PDF uncertainties — reduction by
factor 2!

description of obs. included in fit improves,
but little/no improvement of distributions not
included in fit

Relative uncertainty on gluon-gluon lumi
at high Mx shows remarkable reduction,
with inclusion of just 17 data points!

differential top data is very constraining
and perhaps can compete with jets
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The power of tops

Application: constraining PDFs with 2D-distributions CMS '17

_ cMs
§304;xg(x) uf:e'oooo GeV? NLIO h
£ [ CJHERA+CMS W 8 Tev 1 » CMS perform a PDF fit using their
2 gof ErvmsTey ] recent tf 2D measurements
G L+ b, M) 8 Tev ]
£ o » measurements of double-differential
3 distributions seem to be more

o2k constraining than the 1-dim.

0.4F

L 1 1
10° 107 10 1

> presently: study performed at NLO, but soon this could be done at
NNLO

v/ very encouraging prospects
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Summary & Outlook

> at the stable-top level, theory for tf is at a high level of precision:
NNLO-QCD, +NLO-EW, +resummation, and its potential for
impactful applications using LHC data is huge!

> ongoing production line for NNLO results & tables, in particular new
observables and, variations of m; will appear:
www.precision.hep.phy.cam.ac.uk

> To benefit maximally from precision stable-top theory (e.g. for PDF
fits), systematics arising from e.g. particle-to-parton level
extrapolations, higher-order corrections in decay must be understood
thoroughly.

> new high-precision tools & predictions at level of top decay products
show non-trivial top-decay effects on observables

> comparisons with these new tools is the way to truly exploit progress
on stable-top side
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> To benefit maximally from precision stable-top theory (e.g. for PDF
fits), systematics arising from e.g. particle-to-parton level
extrapolations, higher-order corrections in decay must be understood
thoroughly.

> new high-precision tools & predictions at level of top decay products
show non-trivial top-decay effects on observables

> comparisons with these new tools is the way to truly exploit progress
on stable-top side

Thank you for your attention!
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