Inclusive tt Cross Section at CMS

Susan Dittmer
Top Quark Physics at the Precision Frontier
January 16-18, FNAL

Overview

- Introduction
- Run II standard measurements of inclusive $t\overline{t}$ cross section
 - Dileptonic, semileptonic, all-hadronic
 - How to improve sensitivity?
- Run II new measurements of inclusive $t\overline{t}$ cross section
 - 5 TeV, pPb
- Parameter extraction
 - Top pole mass, as, PDF, EFT, etc.

Introduction

- Ongoing series of inclusive $t\overline{t}$ cross section measurements since start of LHC data taking
 - 5, 7, 8, and 13 TeV
 - Dileptonic, semileptonic, and hadronic final states
- Can reinterpret measurements to place limits on SM parameters
- Entering era of systematically limited measurements
 - How to continue improving measurement precision?

Dileptonic Inclusive tt Cross Section

- $t\bar{t} \to e^{\pm} \mu^{\mp} bb$
 - OS eµ pair, p_T > 20 GeV
 - ≥2 jets, p_T > 30 GeV
 - ≥1 b tagged jet

- Analysis: counting experiment
- Result: $\sigma_{t\bar{t}} = 815 \pm 9 \, (\mathrm{stat}) \pm 38 \, (\mathrm{sys}) \pm 19 \, (\mathrm{lumi}) \, \mathrm{pb}$ (Reference: $\sigma^{\mathrm{NNLO}} = 832^{+20}_{-29} \, (\mathrm{scale}) \pm 35 \, (\mathrm{PDF} + \alpha_{\mathrm{S}}) \, \mathrm{pb})$

Dileptonic Inclusive tt Cross Section

- Systematically limited
- Experimental uncertainties dominate
 - Lepton efficiencies
 - Jet energy scale
- Generator uncertainty also significant
 - Difference between Powheg v2 and MG5_aMC@NLO

Source	$\Delta \sigma_{\mathrm{t\bar{t}}} (\mathrm{pb})$	$\Delta \sigma_{\mathrm{t}\bar{\mathrm{t}}}/\sigma_{\mathrm{t}\bar{\mathrm{t}}}$ (%)	
Experimental			
Trigger efficiencies	9.9	1.2	
Lepton efficiencies	18.9	2.3	
Lepton energy scale	<1	≤0.1	
Jet energy scale	17.4	2.1	
Jet energy resolution	0.8	0.1	
b tagging	11.0	1.3	
Mistagging	<1	\leq 0.1	
Pileup	1.5	0.2	
Modeling			
$\mu_{\rm F}$ and $\mu_{\rm R}$ scales	<1	≤0.1	
t t NLO generator	17.3	2.1	
tt hadronization	6.0	0.7	
Parton shower scale	6.5	0.8	
PDF	4.9	0.6	
Background			
Single top quark	11.8	1.5	
VV	<1	\leq 0.1	
Drell-Yan	<1	\leq 0.1	
Non-W/Z leptons	2.6	0.3	
tītV	<1	≤0.1	
Total systematic	27.0	1.6	
(no integrated luminosity)	37.8	4.6	
Integrated luminosity	18.8	2.3	
Statistical	8.5	1.0	
Total	43.0	5.3	

Semileptonic Inclusive $t\bar{t}$ Cross Section

•
$$t\bar{t} \to \ell bbjj$$
 $\ell = (e, \mu)$

- ==1 lepton, $p_T > 30 \text{ GeV}$
- ≥1 jet, p_T > 30 GeV

- 2015 13 TeV dataset, 2.2 fb⁻¹
- Analysis: fit in bins of N_{jets}, N_{b tag}, lepton flavor, lepton charge
- Result: $\sigma_{t\bar{t}} = 888 \pm 2 \, (\mathrm{stat}) \, ^{+28}_{-26} \, (\mathrm{sys}) \pm 20 \, (\mathrm{lumi}) \, \mathrm{pb}$ (Reference: $\sigma^{\mathrm{NNLO}} = 832^{+20}_{-29} \, (\mathrm{scale}) \pm 35 \, (\mathrm{PDF} + \alpha_{\mathrm{S}}) \, \mathrm{pb}$)

Semileptonic Inclusive $t\bar{t}$ Cross Section

- Systematically limited
- Experimental uncertainties dominate
 - W+jets rate
 - b tag efficiency
 - Lepton efficiencies

All-hadronic Inclusive tt Cross Section

- $t\bar{t} \to bbjjjjj$
 - ≥6 jets, p_T > 45 GeV
 - $H_T > 500 \text{ GeV}$
 - ≥2 b tagged jets
- 2015 13 TeV dataset, 2.53 fb⁻¹
- Analysis: fit to reconstructed top mass

• Result: $\sigma_{t\bar{t}} = 834 \pm 25 \, (\mathrm{stat}) \, ^{+118}_{-104} \, (\mathrm{sys}) \pm 23 \, (\mathrm{lumi}) \, \mathrm{pb}$ (Reference: $\sigma^{\mathrm{NNLO}} = 832^{+20}_{-29} \, (\mathrm{scale}) \pm 35 \, (\mathrm{PDF} + \alpha_{\mathrm{S}}) \, \mathrm{pb})$

All-hadronic Inclusive $t\bar{t}$ Cross Section

- Systematically limited
- Experimental uncertainties dominate
 - Jet energy scale, QCD rate, b tag efficiency
- Parton shower also contributes
 - Difference between Pythia8, Herwig++
- Less sensitive than dileptonic, semileptonic measurements

Source	(%)
QCD background modeling	-1.0, +6.6
Subdominant backgrounds	± 4.0
Jet energy scale	-8.2, +9.0
Jet energy resolution	-0.7, +0.8
b tagging	-5.5, +6.2
Trigger efficiency	-2.9, +3.2
Scale (μ_F and μ_R)	-1.5, +0.0
PDF	± 1.0
Parton shower	-5.0, +2.5
NLO generator	± 2.0
Total systematic	-12.4, +14.1
Statistical	±3.0
Integrated luminosity	±2.7

Improving Systematic Limitations

- 13 TeV measurements all systematically limited
- Many common sources of systematic uncertainty
 - Mainly experimental: lepton efficiencies, JES, b tag efficiency, etc.
- Ways to improve
 - Cross section from fit instead of counting experiment
 - Improved a priori measurement of efficiencies
 - Combination of measurements

Inclusive $t\bar{t}$ cross section at 5 TeV

2015 5 TeV dataset, 27.4 pb⁻¹

Dileptonic

Semileptonic

- $\bullet t\bar{t} \to e^{\pm}\mu^{\mp}bb, \ \mu^{\pm}\mu^{\mp}bb$
 - OS leptons, $\mu(e) p_T > 18(20) \text{ GeV}$
 - ≥2 jets, p_T > 25 GeV
 - Z veto, MET cut
- Analysis: counting experiment

- $| \bullet t\bar{t} \rightarrow ebbjj, \ \mu bbjj |$
 - ==1 lepton, $\mu(e) p_T > 25(40) \text{ GeV}$
 - ≥2 non-b-tagged jets, p_T > 30 GeV
- Analysis: fit in bins of e/µ, 0/1/≥2 additional b tagged jets
 - Fit min dR of non-b-tagged jets

Statistically limited, semileptonic channel most sensitive

Combined result:
$$\sigma_{t\bar{t}} = 69.5 \pm 6.1 \, (\mathrm{stat}) \pm 5.6 \, (\mathrm{sys}) \pm 1.6 \, (\mathrm{lumi}) \, \mathrm{pb}$$

(Reference: $\sigma^{\mathrm{NNLO}} = 68.9^{+1.9}_{-2.3} \, (\mathrm{scale}) \pm 2.3 \, (\mathrm{PDF}) \, ^{+1.4}_{-1.0} \, (\alpha_S) \, \mathrm{pb}$)

Inclusive $t\bar{t}$ Cross Section in pPb Collisions

•
$$t\bar{t} \to \ell bbjj$$
 $\ell = (e, \mu)$

- ==1 μ (e), $p_T > 30 \text{ GeV}$
- ≥4 jets, p_T > 25 GeV
- 2016 8.16 TeV pPb dataset,
 174 nb⁻¹
- Analysis: fit reconstructed W mass in bins of 0/1/≥2 b tags
- Result: $\sigma_{t\bar{t}} = 45 \pm 8 \text{ nb}$ (Reference: $\sigma^{\text{NNLO}} = 59.0 \pm 5.3 \, (\text{PDF})^{+1.6}_{-2.1} \, (\text{scale}) \, \text{nb}$)

Systematically limited Dominant uncertainties: b tagging efficiency, background modeling

 -0.01 ± 0.01 -2.1 (Scarc) 110)

Extracting Parameter Limits

- Inclusive $t\bar{t}$ cross section depends on top quark pole mass, strong coupling constant α_S , gluon PDF
- Measured inclusive cross sections reinterpreted to provide bounds on these parameters
- Limit precision relies on:
 - Precision of inclusive $t \overline{t}$ cross section measurement
 - Uncertainty in dependence of measurement on parameter
 - Uncertainty in theoretical dependence of inclusive cross section on parameter

Limits on Top Pole Mass

- Run II: 170.6 ± 2.7 GeV
 - From 13 TeV semileptonic measurement of inclusive cross section
 - Cross section measurement uncertainty dominates
- Run I: 173.8 +1.7/-1.8 GeV
 - From combination of 7 and 8 TeV dileptonic measurements of inclusive cross section (JHEP 08 (2016) 029)
- Can we benefit from further combination?

Limits on as

- No limit yet on α_S from Run
 Il data
- Run I as limit from 7 TeV dileptonic measurement of inclusive cross section
- Dominant uncertainties:
 - Uncertainty on inclusive cross section measurement
 - PDF

Limits on Gluon PDF

- PDFs measured through fit to many CMS measurements
 - Including inclusive $t\overline{t}$ cross section
- 13 TeV inclusive cross section measurements not yet applied to PDFs
- 5 TeV inclusive cross section measurement moderately improves PDF precision at high x

EFT Interpretation

- Impact of generic new physics beyond LHC energy reach modeled by adding higher-order EFT terms to SM Lagrangian
- 6th-dimensional operator O_{tG} has dominant effect on inclusive $t\bar{t}$ cross section, followed by O_G and $O_{\varphi G}$
- Ongoing work to reinterpret $t\bar{t}$ cross sections as EFT limits
 - Dedicated CMS subgroup

Sample diagrams for O_{tG} , O_{G} , $O_{\Phi G}$ Phys. Rev. D, 83 (2011) 034006