
Inclusive tt cross section at ATLAS

Jim Cochran Iowa State University

Top Quark Physics at the Precision Frontier January 16-17, 2018 Fermilab

Outline

- Motivation
- Introduction and available measurements
- Selected measurements in detail
 - Dilepton measurements at 8 & 13 TeV
 - Lepton+jets measurement at 8 TeV
 - Comparison of uncertainties
 - Demise of the beam energy uncertainty
- Applications
 - Fiducial cross-sections
 - Cross section ratios
- Conclusions

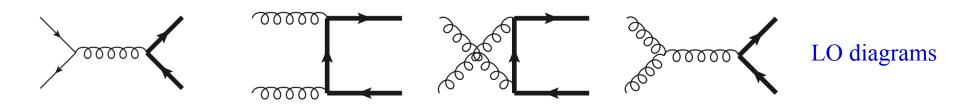
This talk borrows heavily from Richard Hawking's excellent Top2017 talk which includes (& compares) ATLAS & CMS tt csec results:

 $\underline{https://indico.cern.ch/event/659310/contributions/2689370/attachments/1524910/2384065/RH_TTXSec_final.pdf}$

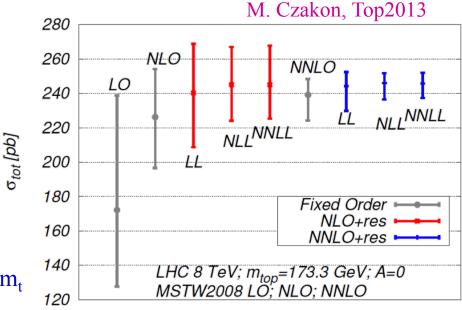
Motivation

- Why should we (still) care about measuring $\sigma_{t\bar{t}}$?
- LHC is a top factory
 - 8 TeV: 15 tt pairs/min, 5 million tt events in 20 fb⁻¹
 - 13 TeV: 500 tt̄ pairs/min, 30 million tt̄ events in 36 fb⁻¹

Unprecedented opportunity to look for deviations from the SM


- Test pQCD at NNLO precision (fixed order)
- Tune MC generators (recall that tt production is an irreducible background to many BSM processes)
 - NLO ME generators
 - (New) parton shower generators

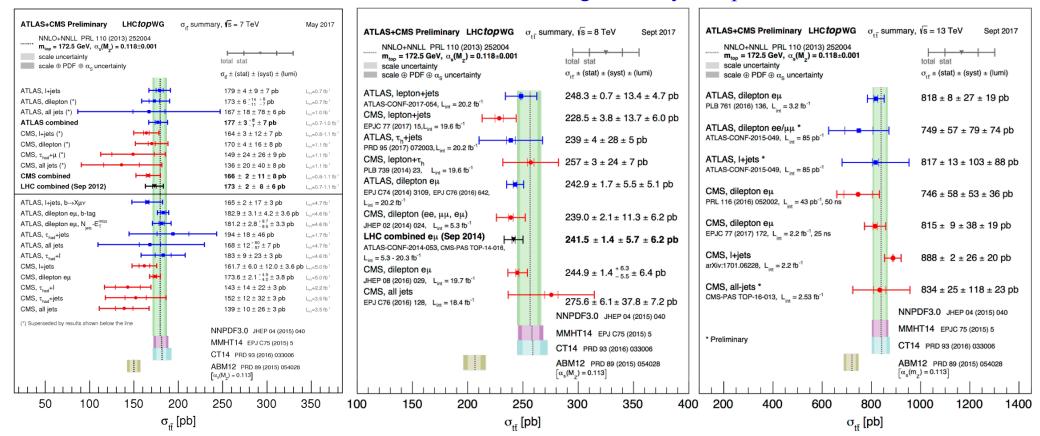
Introduction


• $\sigma(t\bar{t})$ dominated by gluon fusion (qq/gg=10%/90%) at LHC

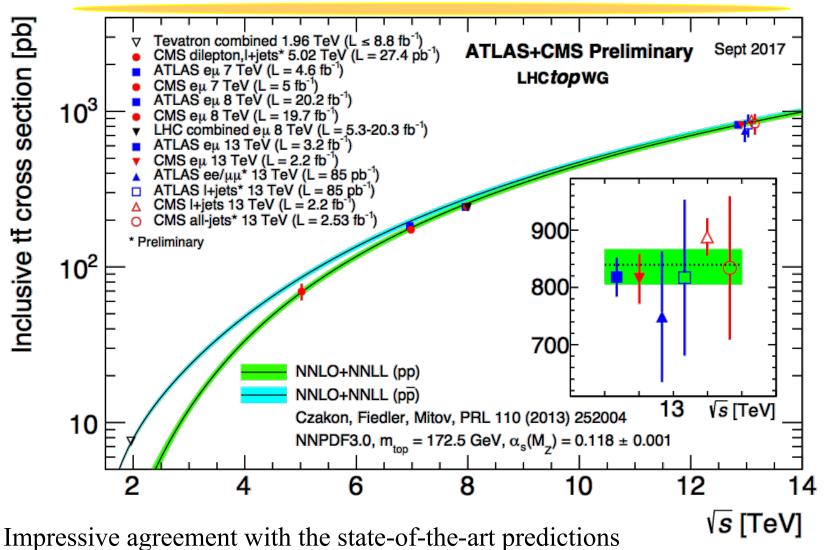
- Challenging to calculate NNLO and NNLL corrections are important
 - Uncertainties dominated by QCD scale choice and PDFs
- Cross-sections for $m_t=172.5$ GeV

√s (TeV)	$\sigma(tt) \pm PDF/\alpha_s \pm scale$	$\Delta\sigma/\sigma$
7	$177.3 \pm 9.0 + 4.6 - 6.0 \text{ pb}$	6.1%
8	$252.9 \pm 11.7 + 6.4 - 8.6 \text{ pb}$	5.7%
13	$832 \pm 35 + 20 - 29 \text{ pb}$	5.5%

- Calculated with Top++ 2.0
- MSTW, CT10 and NNPDF 2.3 PDFs
- Additional uncertainty of $\mp 3\%$ for ± 1 GeV on m_t



Some measurements


- 18+8+7=33 $t\bar{t}$ cross-section measurements at 7, 8, & 13 TeV a mature field
 - Most precise measurements from eμ dilepton at 7+8 TeV, and 1+jets at 13 TeV
 - Individual analyses with precision of 3-4%
 - All-hadronic and measurements with taus are significantly less precise

Measurements vs. energy

Both at Tevatron and all LHC energies

Measurement basics

Dilepton measurements

- Most precise results use only e μ final state to avoid $Z/\gamma^* \rightarrow ee / \mu\mu$ background
- Remaining backgrounds from Wt, fake leptons, and residual $Z \rightarrow \tau\tau$ and $VV \rightarrow e\mu$
- Limited opportunity for profiling and constraining modeling uncertainties

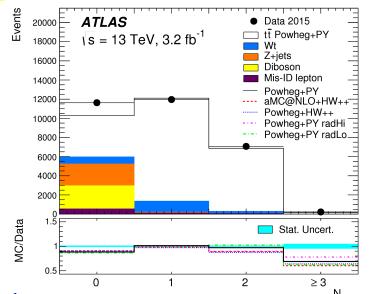
Lepton+jets

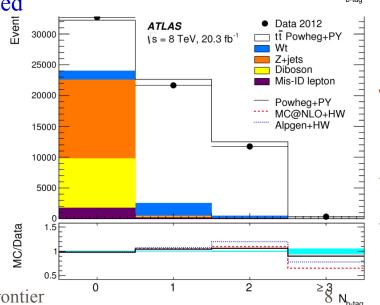
- Huge statistics, but backgrounds from t-channel single top, W+jets, and multijets
- Multiple control regions with different jet and b-tag multiplicities
 - Can constrain JES from $W \rightarrow qq$ as in top mass analyses

Main systematics

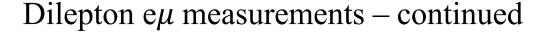
- tt̄ modeling (generator choice, QCD scales, radiation, hadronization)
 - Influences efficiencies and acceptances some gain from fiducial cross-sections
- Detector calibration lepton, jet and b-tagging efficiencies, and energy calibration
- Backgrounds model using data wherever possible
 - Irreducible Wt background modeled using simulation
- Luminosity generally 2-3%, benefitting from precise van der Meer scans
 - No need to normalize to Z cross-section, as sometimes done at Tevatron

Dilepton eu measurements




- Avoid systematics due to jet and b-tag modeling
 - Count number of eµ events with 1 & 2 b-tagged jets
 - Ignore light jets reduces radiation uncertainty
 - Assume two top quarks decay independently

1 b-tag:
$$N_1 = L\sigma_{tar{t}} \; \epsilon_{e\mu} 2\epsilon_b (1-C_b\epsilon_b) + N_1^{
m bkg}$$


2 b-tag:
$$N_2 = L \sigma_{t ar{t}} \; \epsilon_{e \mu} C_b \epsilon_b^{\; 2} + N_2^{
m bkg}$$

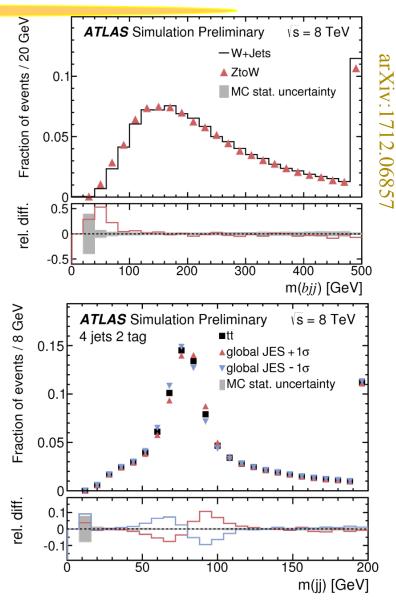
- ε_{eu} : fraction of $t\bar{t}$ with reconstructed $e\mu$ pair
- ε_b : probability for b-jet from top decay to be reconstructed within acceptance and b-tagged
- $C_b \approx 1$ accounts for correlations between b-jets
- N₁^{bkg} and N₂^{bkg} from Wt, $Z \rightarrow \tau \tau + jets$, diboson, fakes
- Fit $\sigma_{t\bar{t}}$ and ε_b ; $\varepsilon_{e\mu}$, C_b , Wt and diboson b/g from MC
 - $Z \rightarrow \tau \tau + 1,2$ b-tags from $Z \rightarrow ee/\mu\mu + jets$ control region
 - Fake leptons from same-sign control region
- Same analysis at 7, 8 and 13 TeV

- Largest systematics from modeling $\varepsilon_{\rm e\mu}$
 - Different tt models, Pythia vs Herwig parton shower, PDFs
 - 13 TeV models not yet mature
 - Lepton efficiencies/scales from $Z\rightarrow ll$
 - Only single lepton triggers to reduce systematic uncertainties
 - Isolation efficiencies measured in-situ in tt samples by relaxing cuts
- Background modeling dominated by Wt x-sec uncertainty and tt/Wt interference
 - Jets, b-tagging and fake leptons <1%</p>
- 8 TeV analysis now updated with final 2012
 luminosity uncertainty
 - Beam energy uncertainty can now also be neglected

				_
	Uncertainty	$\Delta\sigma_{tar{t}}/c$	$\sigma_{tar{t}}~(\%)$	
	\sqrt{s}	$7\mathrm{TeV}$	$8\mathrm{TeV}$	13 TeV
	Data statistics	1.69	0.71	0.9
-	$t\bar{t}$ modelling and QCD scale	1.46	1.26	3.0
	Parton distribution functions	1.04	1.13	0.5
C	Background modelling	0.83	0.83	0.9
	Lepton efficiencies	0.87	0.88	0.8
	Jets and b -tagging	0.58	0.82	0.5
	Misidentified leptons	0.41	0.34	0.6
- :	Analysis systematics $(\sigma_{t\bar{t}})$	2.27	2.26	3.3
	Integrated luminosity	1.98	2.1	2.3
	LHC beam energy	1.79	1.72	1.5
-	Total uncertainty	3.89	3.6	4.4

$$\sigma_{t\bar{t}} = 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \,\mathrm{pb} \; (\sqrt{s} = 7 \,\mathrm{TeV})$$

$$\sigma_{t\bar{t}} = 242.9 \pm 1.7 \pm 5.5 \pm 5.1 \pm 4.2 \,\mathrm{pb} \quad (\sqrt{s} = 8 \,\mathrm{TeV})$$


$$(\pm stat, \pm syst, \pm lumi, \pm E_{beam})$$

Lepton+jets measurement – at 8 TeV

- Lepton+jets channel: $t\bar{t} \rightarrow l\nu b$ qqb
 - Select lepton+ E_T^{miss} + \geq 4 jets, 1-2 b-tags
 - Significant backgrounds from W+jets and t-channel single top, QCD multijet with fake lepton
 - More complex event selection with more jets
 - Typically larger uncertainties on acceptance
- New ATLAS 1+jets analysis at 8 TeV
 - Model W+jets background shape using data Z+jets
 - Scale lepton momenta to account for $m_W \neq m_Z$
 - Convert one lepton to a neutrino (E_T^{miss})
 - Provides a good model of W+jets kinematics
 - Normalization of W+jets background floated in fit
 - Exploit W \rightarrow qq decay to constrain jet energy scale with an overall scale factor ($\pm 1\sigma$ of JES syst.)
 - Reduces systematics on jet energy scale

Lepton+jets at 8 TeV – continued

Events 0000

30000

20000

10000

0.8

Data Pred.

20000 Events 15000 **ATLAS** Preliminary

Single top

Multijet

0.2

ATLAS Preliminary

Single top

 \geq 4 jets \geq 2 tag

Data

Z+Jets

SR1

≥ 4 jets 1 tag

s=8 TeV, 20.2 fb

ZtoW data

///// Post-fit uncertainty

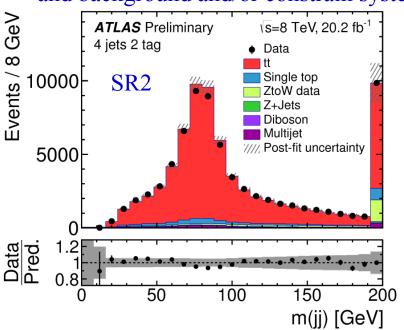
0.6

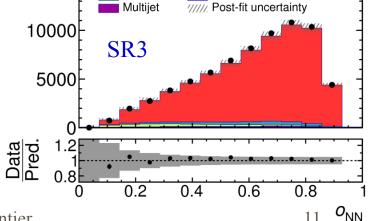
ZtoW data

Diboson

0.8

s=8 TeV, 20.2 fb⁻¹


 o_{NN}


Diboson

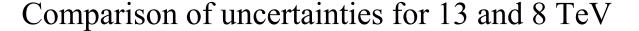
Final fit to 3 signal regions depending on N_{jet},N_{b-tag}

	Selection	Fit variable
SR1	≥4 jets, 1 b-tag	NN discriminant
SR2	4 jets, 2 b-tags	m(jj)
SR3	≥4 jets, ≥2 b-tags, not SR2	NN discriminant

 Discriminating variable in each region to separate signal and background and/or constrain systematics

0.4

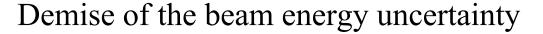
Top Quark Physics at the Precision Frontier


- Simultaneous fit for several parameters
 - tt̄ signal strength, W+jets background normalisation in SR1 and SR2+SR3
 - Correction factors for b-tagging efficiency and jet energy scale
- Final result:

$$\sigma_{t\bar{t}} = 248.3 \pm 0.7 \text{ (stat.)} \pm 13.4 \text{ (syst.)} \pm 4.7 \text{ (lumi.)} \text{ pb}$$

- Total uncertainty of 5.7%, systematics dominated
- Largest systematics
 - MC modelling, including scale variations and PDFs
 - Lepton trigger and identification efficiencies
 - Jet energy scale (reduced by 60% due to in-situ W→qq constraint)
 - Residual b-tagging efficiency systematic is small

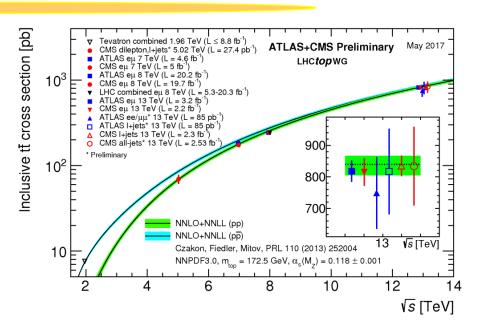
Source	$\frac{\Delta\sigma}{\sigma}$ [%]
Data statistics	± 0.3
Detector	
Jet energy scale	± 1.1
Jet energy resolution	± 0.1
Jet reconstruction efficiency	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	± 0.1
$E_{\rm T}^{ m miss}$ resolution	< 0.1
Muon momentum scale	< 0.1
Muon momentum resolution	< 0.1
Electron energy scale	± 0.1
Electron energy resolution	< 0.1
Lepton identification	± 1.4
Lepton reconstruction	± 0.3
Lepton trigger	± 1.3
Flavour tagging	
b-tagging efficiency	± 0.3
c-tagging efficiency	± 0.5
Mistag rate	± 0.3
Background normalisation	
Multijet	± 0.6
Single top	± 0.3
Z+ jets	± 0.2
Diboson	± 0.1
MC modelling	
NLO matching	± 1.1
Scale variations	± 2.2
Parton shower	± 1.3
PDF	± 3.0
$Z ext{to} W$ modelling	±1.1
Luminosity	±1.9
Total(sys)	±5.7
Total(sys+stat)	±5.7
Tr.	



- Uncertainties (%) on total cross-section classified into various components
 - Statistics, tt modeling, detector, background, luminosity
 - Beam energy uncertainty neglected if quoted

√s (TeV)	$\int L (fb^{-1})$	Measurement	Stat.	tt model	Det.	Bkg	Lumi	Total
13	3.2	dilepton	0.9	3.0	1.1	0.9	2.3	4.2
8	20.2	dilepton	0.7	1.7	1.2	0.9	2.1	3.2
8	20.2	1+jets	0.3	4.1	2.3	1.3	1.9	5.7

- 13 TeV dilepton result not as precise as 8 TeV
 - Modeling uncertainties significantly larger for l+jets at 8 TeV
- 13 TeV not yet mature larger tt modeling uncertainties
 - Still potential for improvement in 13 TeV dilepton analyses



- Cross-section is a steep function of \sqrt{s}
 - At \sqrt{s} =8 TeV, 2.6% change in $\sigma(t\bar{t})$ prediction for 1% change in \sqrt{s}
 - Not negligible compared to experimental precision
- How well do we know \sqrt{s} at LHC?
 - First estimates from revolution frequency difference of protons and Pb in LHC
 - 2013 p+Pb run \rightarrow 0.66% in \sqrt{s} , giving 1.7% in $\sigma(t\bar{t})$ significant uncertainty
- New estimates based on magnetic model

$$P = \frac{Ze}{2\pi} \oint B(s)ds$$

- LHC magnets and transfer functions understood to 0.1%
 - Other sources negligible
- Now, 0.2-0.3% on $\sigma(t\bar{t})$ can neglect it \odot

LHC beam energy uncertainty

Contribution	Error (%)
PC calibration	0.001
Slow radial changes	0.005
Earth tides	0.005
Orbit correctors	0.03
Transfer function	0.1
Sum	0.1

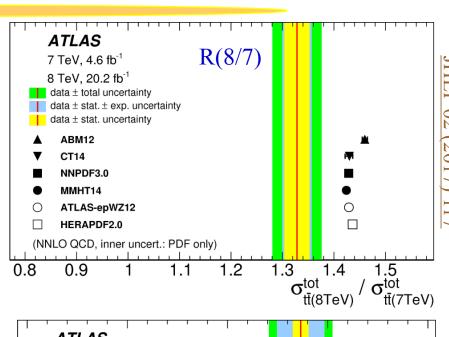
Phys. Rev. Accel. Beams 20 081003

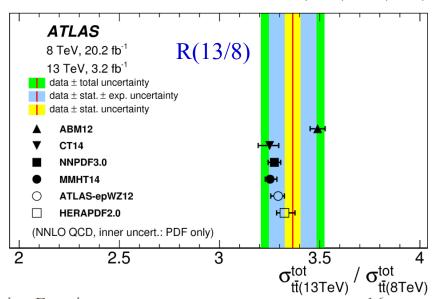
Fiducial cross-sections

- Analyses also quote fiducial cross-sections
 - Fiducial predictions with NNLO corrections for production/decay now available

	ATLAS	S setup, $e^{\pm}\mu^{\mp}$	channel $\boxed{24}$			
energy	fiducial volume	LO [pb]	NLO [pb]	ÑΝLΟ [pb]	$\delta_{ m dec.}$	ATLAS [pb]
7 TeV	$p_T(l^{\pm}) > 25 \text{ GeV}, \eta(l^{\pm}) < 2.5$	$1.592^{+39.2\%}_{-26.0\%}$	$2.007^{+11.9\%}_{-13.2\%}$	$2.210^{+2.2\%}_{-6.0\%}$	-0.3%	$2.305^{+3.8\%}_{-3.8\%}$
7 TeV	$p_T(l^{\pm}) > 30 \text{ GeV}, \eta(l^{\pm}) < 2.4$	$1.265^{+39.3\%}_{-26.1\%}$	$1.585^{+11.8\%}_{-13.1\%}$	$1.736^{+2.2\%}_{-6.0\%}$	-0.8%	$1.817^{+3.8\%}_{-3.8\%}$
8 TeV	$p_T(l^{\pm}) > 25 \text{ GeV}, \eta(l^{\pm}) < 2.5$	$2.249^{+37.9\%}_{-25.5\%}$	$2.855^{+11.9\%}_{-12.9\%}$	$3.130^{+2.3\%}_{-6.0\%}$	-0.3%	$3.036^{+4.1\%}_{-4.1\%}$
8 TeV	$p_T(l^{\pm}) > 30 \text{ GeV}, \eta(l^{\pm}) < 2.4$	$1.788^{+38.0\%}_{-25.5\%}$	$2.256^{+11.7\%}_{-12.9\%}$	$2.461^{+2.3\%}_{-6.1\%}$	-0.7%	$2.380^{+4.1\%}_{-4.1\%}$

Good agreement with experiment after incorporating NNLO corrections


$t\bar{t}$ cross-section ratios at different \sqrt{s}



- Some systematics cancel in ratio of crosssections at different energies
 - Especially for analyses using the same technique, consistent MC, etc.

R(8/7)	$R \pm stat \pm syst \pm lumi$	⊿R/R
ATLAS eμ	$1.328 \pm 0.024 \pm 0.015 \pm 0.038$	3.5%

- NNLO+NNLL prediction 1.430±0.013
 - Uncertainty dominated by PDFs
- 8/7 TeV result 2.1 σ below prediction ...
- ATLAS has also calculated ratios from eμ analysis at 13/7 and 13/8 TeV
 - Results in agreement with predictions, but lower precision (4.8% and 4.7%)
- ATLAS has also calculated ratios tt̄/Z
 - Luminosity uncertainty cancels
 - Good agreement with expectations

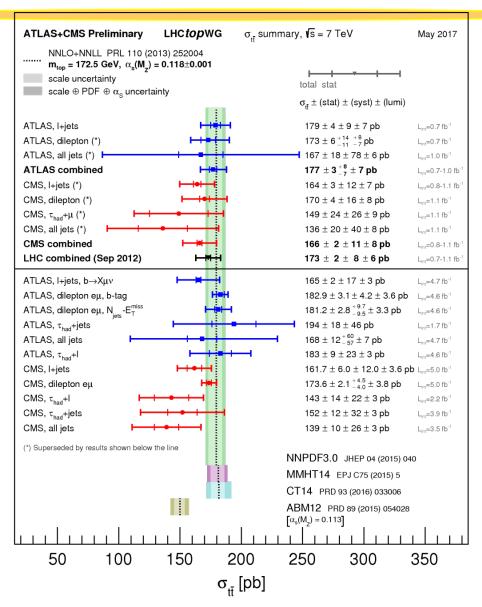
Conclusions

- Inclusive tt cross-sections from LHC are now quite mature
 - Most precise measurements from dilepton and lepton+jets channels
 - 7-8 TeV individual channel results with precision of 3-4%
 - Slightly less precise at 13 TeV, but only relatively 'early' analyses so far, and no use of 2016 data yet
- Total x-sec results consistent with NNLO+NNLL predictions for all energies
 - First comparisons with NNLO fiducial cross-section predictions
 - Important to model the decays at NNLO, as well as production
- Various applications
 - Constraints on gluon PDF
- Can we do better?
 - Refine analysis of 13 TeV data, profiting from tt modelling studies at 13 TeV
 - Improved predictions since more LHC data in PDFs, but beware of circularity ...

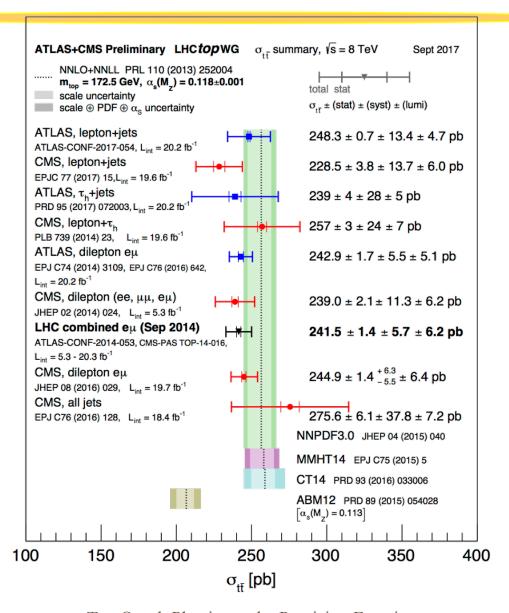
References

- Dilepton analyses
 - ATLAS 13 TeV: <u>Phys. Lett. B761 (2016) 136</u>
 - ATLAS 7+8 TeV: Eur. Phys. J C74 (2014) 3109 + addendum C76 (2016) 642
- Lepton+jet analyses
 - ATLAS 8 TeV: arXiv:1712.06857
- Others
 - ATLAS tt/Z ratios: <u>JHEP 02 (2017) 117</u>
 - ATLAS 8 TeV τ+jets: <u>Phys. Rev. D 95 (2017) 072003</u>
 - LHC beam energy: Phys. Rev. Accel. Beams 20 081003
 - Combined <u>summary plots</u>

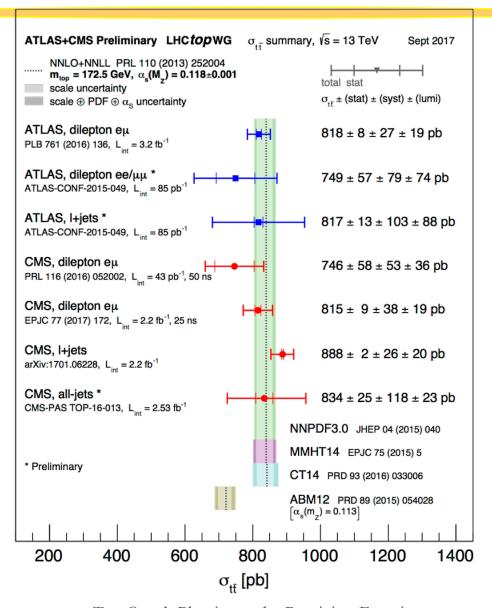
Backup

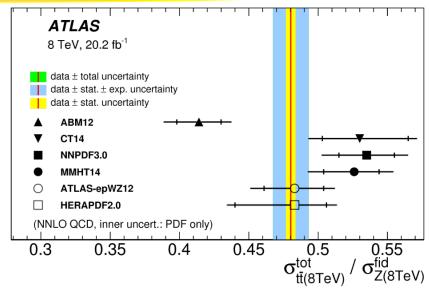


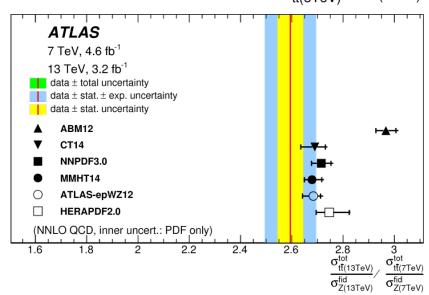
Backup slides



Cross-section measurements at 8 TeV



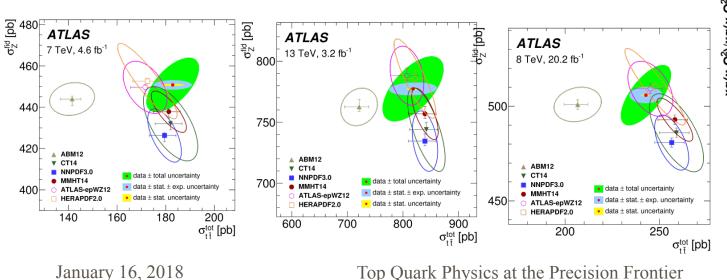

tt/Z cross-section ratios

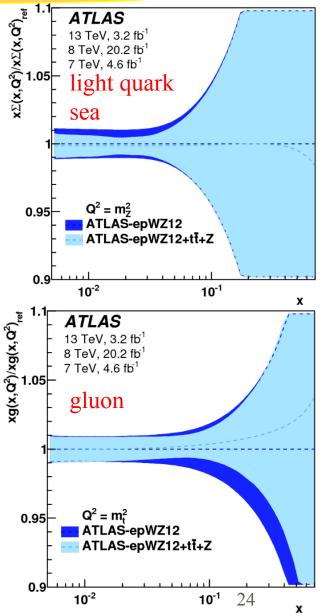


 Luminosity uncertainty removed by considering tt/Z cross-section ratio

$$R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5 \left(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu}\right)}$$

- Use of $Z \rightarrow ee + \mu\mu$ average cancels lepton efficiency systematics with $t\bar{t} \rightarrow e\mu$
 - Common selections for Z and tt analyses
- Ratio of tt/Z at one energy sensitive to ratio of gluon vs quark PDF
 - 'Global' PDF sets a bit high
 - HERAPDF 2.0 and ATLAS epWZ
 (HERA DIS+ATLAS W/Z data) do well
- Double ratio with two energies
 - Reduces PDF, scale and m_t uncertainties
 - 13/8 TeV data agrees well with most PDFs
 - $8/7 \text{ t\bar{t}}$ ratio tension is increased to $\sim 3\sigma$

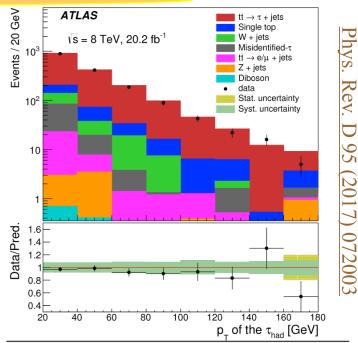




ATLAS tt/Z - ratio data in PDF fits

- Combined fit to all 6 measurements (tt and Z at 3 \sqrt{s})
 - Fit cross-sections to predictions using ATLAS-epWZ12 PDF and profile uncertainties
 - Demonstrates impact of this data on PDF fits
 - Light quark sea is constrained around $x\approx0.02$ particularly significant effect on the strange sea from Z data
 - Gluon PDF constrained around 0.1 due to tt data

ATLAS 13 TeV, 3.2 fb⁻¹ 8 TeV. 20.2 fb⁻¹ 7 TeV, 4.6 fb⁻¹


8 TeV $\tau_{\rm had}$ +jets

- $t\bar{t}$ decays with τ used to probe BSM contributions
 - E.g. $t \rightarrow H^+b \rightarrow \tau \nu b$ in 2HDM excess of τ vs e/μ
- Leptonic $\tau \rightarrow e/\mu$ hard to separate from direct e/μ
- Hadronic τ decays give rise to narrow jet
 - Dedicated τ -ID, separate analysis for $\tau \rightarrow 1$ or 3 tracks
- Require $E_T^{miss} > 150 \text{ GeV}$, 1/3 prong τ_{had} and $\geq 2 \text{ b-jets}$
 - Trigger based on E_T^{miss}
 - Veto isolated e/μ to reduce $t\bar{t} \rightarrow e/\mu$ +jets contamination
 - Backgrounds with real τ (single top, W+jets) from MC
 - Fake τ background from data control samples with inverted $\overline{\tau}_{E}$ identification requirements
- Final result

$$\sigma_{t\bar{t}} = 239 \pm 4(\text{stat}) \pm 28(\text{syst}) \pm 5(\text{lumi}) \text{ pb}$$

- Total uncertainty of 12%
 - Main systematics from JES, b-tag and tt modelling
- Limit of 22 fb on BSM contrib. to visible cross-section

$ au_{ ext{Event counts}}$	$\tau_{1 ext{-prong}}$	$\tau_{3 ext{-prong}}$	$ au_{ m had}$
$t\bar{t} \to e/\mu + \text{jets}$ 23	1.8 ± 4.7	6.8 ± 2.5	28.3 ± 5.3
Single top	107 ± 10	33.9 ± 5.8	141 ± 12
W + jets 73	1.7 ± 8.5	27.1 ± 5.2	99 ± 10
Z + jets	7.2 ± 2.7	1.6 ± 1.3	8.7 ± 3.0
Diboson	1.0 ± 1.0	0.4 ± 0.6	1.5 ± 1.2
Misidentified- $\tau_{\rm had}$ 46	6.6 ± 6.8	24.9 ± 5.0	74.9 ± 8.7
Expected $t\bar{t} \to \tau + \text{jets}$ 10	084 ± 33	312 ± 18	1398 ± 37
Total Expected 13	339 ± 37	407 ± 20	1751 ± 42
Data 12	278	395	1678