FCNC, EFT, Anomalous couplings at ATLAS

James A. Mueller
University of Pittsburgh

On Behalf of the ATLAS Collaboration

Flavor Changing Neutral Currents

Not allowed at tree level in SM.

Allowed at loop-level, but GIM suppressed. Branching Ratio $\sim 10^{-15} \rightarrow 10^{-12}$

BSM interactions could lead to much larger effects
Branching Ratio up to 10^{-4}

There have been many searches for top FCNC in ATLAS.
I will present the ones that currently provide our best limits

The Lagrangian for top FCNC can be written in terms of a set of anomalous couplings:

$$
\begin{array}{r}
\mathcal{L}=\sum_{q=u, c}\left[\sqrt{2} g_{s} \frac{\kappa_{\text {gqt }}}{\Lambda} \bar{t} \sigma^{\mu \nu} T_{a}\left(f_{G q}^{L} P_{L}+f_{G q}^{R} P_{R}\right) q G_{\mu \nu}^{a}+\right. \\
+\frac{g}{\sqrt{2} c_{W}} \frac{\kappa_{z q t}}{\Lambda} \bar{t} \sigma^{\mu \nu}\left(f_{Z q}^{L} P_{L}+f_{Z q}^{R} P_{R}\right) q Z_{\mu \nu}+\frac{g}{4 c_{W}} \zeta_{z q t} \bar{t} \gamma^{\mu}\left(f_{Z q}^{L} P_{L}+f_{Z q}^{R} P_{R}\right) q Z_{\mu}- \\
-e \frac{\kappa_{\gamma q q}}{\Lambda} \bar{t} \sigma^{\mu \nu}\left(f_{\gamma q}^{L} P_{L}+f_{\gamma q}^{R} P_{R}\right) q A_{\mu \nu}+ \\
\left.+\frac{g}{\sqrt{2}} \bar{t} \kappa_{H q t}\left(f_{H q}^{L} P_{L}+f_{H q}^{R} P_{R}\right) q H\right]+ \text { h.c. }
\end{array}
$$

These couplings can also be expressed in terms of EFT coefficients, or combinations of coefficients

Search for FCNC in $t \bar{t}$ events. One top decays to Wb , the other to $\mathrm{qH}, \mathrm{H} \rightarrow \gamma \gamma$

$$
\mathrm{m}_{\mathrm{vj}} \in[152,190]
$$

Events categorized by whether

1. W decays to jets or leptons.
2. m_{Wb} inside top mass window or not.

JHEP 10 (2017) 129 arXiv:1707.01404

$$
\mathrm{m}_{\mathrm{wb}}{ }^{\ddagger}[120,220] \mathrm{GeV}
$$

$$
\mathrm{m}_{\mathrm{Wb}}{ }^{\ddagger}[130,210] \mathrm{GeV}
$$

$\mathrm{q}_{B}=-2(\ln L(\mathcal{B})-\ln \mathrm{L}(\widehat{\mathcal{B}}))$
Shown for each individual category and the combination.

$$
\begin{aligned}
\mathrm{B}(\mathrm{t} \rightarrow \mathrm{Hu}) & <0.24 \% \text { (obs) } \\
& <0.17 \% \text { (exp) } \\
\mathrm{B}(\mathrm{t} \rightarrow \mathrm{Hc}) & <0.22 \% \text { (obs) } \\
& <0.16 \% \text { (exp) }
\end{aligned}
$$

limits extracted from $\mathrm{t} \rightarrow \mathrm{qH}$

JHEP 10 (2017) 129 arXiv:1707.01404

The branching ratio limits have been used to obtain limits on the off-diagonal Yukawa couplings

$$
\sqrt{\left|\lambda_{t c H}\right|^{2}+0.92\left|\lambda_{t u H}\right|^{2}}<0.090
$$

Where each λ is the quadratic sum of the two possible chirality couplings.
This could be recast as a limit on a quadratic combination of all the relevant EFT coefficients $C_{u \phi}^{13}, C_{u \phi}^{31 *}, C_{u \phi}^{23}$, and $C_{u \phi}^{32 *}$.

Search for FCNC in $t \bar{t}$ events. One top decays to $\mathrm{Wb}, \mathrm{W} \rightarrow l v$ the other to $\mathrm{qZ}, \mathrm{Z} \rightarrow l^{+}+-$
3 leptons plus 2 jets; 1 b-tagged, plus MET.

Form χ^{2} based on reconstructed $\mathrm{m}_{\mathrm{jll}}, \mathrm{m}_{\mathrm{blv}}$, and m_{lv}.

Simultaneous fit to 6 distributions in Signal and Control Regions

Main syst due to background Modeling

Results
$t \rightarrow q Z$

$$
\begin{aligned}
\mathrm{B}(\mathrm{t} \rightarrow \mathrm{Zu}) & <0.017 \% \text { (obs) } \\
& <0.024 \% \text { (exp) } \\
\mathrm{B}(\mathrm{t} \rightarrow \mathrm{Zc}) & <0.023 \% \text { (obs) } \\
& <0.032 \% \text { (exp) }
\end{aligned}
$$

EFT limits from $t \rightarrow q Z$

- Limits on EFT coefficients related to the tensor Ztq couplings have also been extracted from the branching ratio limits.
- Each limit assumes all other coefficients are 0.
- Since the tensor couplings depend on linear combinations of $C_{u W}$ and $C_{u B}$, it would be best to show these correlations.
- The $y t q$ couplings depend on a different combination of couplings, so a combined analysis would be more powerful.
- This also assumes the vector $Z t q$ couplings are zero. How does this affect limits obtained on the tensor couplings?

$t \rightarrow q g$

Search for FCNC in exclusive single-top events. isolated lepton, MET, exactly 1 b -tagged jet.

Eur. Phys. J. C (2016) 76:55 arXiv:1509.00294

W+jets suppressed with Neural Net.
13 variables, most important:
Transverse mass of reconstructed top

Result shows excluded region in plane of
Eur. Phys. J. C (2016) 76:55 arXiv:1509.00294 Branching Ratios. Shaded region shows one-sigma variation of expected limit.

$$
\begin{aligned}
& \mathrm{B}(\mathrm{t} \rightarrow \mathrm{ug})<4 \times 10^{-5}(\mathrm{obs}) \\
& \mathrm{B}(\mathrm{t} \rightarrow \mathrm{cg})<20 \times 10^{-5}(\mathrm{obs})
\end{aligned}
$$

Largest systematic uncertainties due to Missing E_{T} modeling Jet Energy resolution

coupling limits extracted from $\mathrm{t} \rightarrow \mathrm{qg}$

Assumes only left-handed couplings.
Conservative limit as right-handed couplings would be easier to distinguish from SM top production.

Assuming all other couplings are SM , one can quote $\mathrm{K}_{\text {ugt }} / \Lambda<5.8 \times 10^{-3}, \mathrm{~K}_{\text {cgt }} / \Lambda<13 \times 10^{-3}$

In future, perhaps we can quote how limits vary with assumed right- vs left-handed couplings.

Left handed couplings could also be expressed in terms of $C_{u G}^{31 *}, C_{u G}^{32 *}$; right-handed: $C_{u G}^{13}, C_{u G}^{23}$

Summary of all Branching Ratio limits

Other constraints on couplings

The angular correlations, mentioned by Ben yesterday, have also been used to extract anomalous couplings associated with the Wtb vertex.

$$
\mathcal{L}_{W t b}=-\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu}\left(V_{L} P_{L}+V_{R} P_{R}\right) t W_{\mu}^{-}-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu \nu} q_{\nu}}{m_{W}}\left(g_{L} P_{L}+g_{R} P_{R}\right) t W_{\mu}^{-}+\text {h.c. },
$$

These can be associated with the $V_{t b}$ from the SM plus four EFT coefficients.

$$
V_{L}=V_{t b}+C_{\phi q}^{(3,3+3)} \frac{v^{2}}{\Lambda^{2}} ; V_{R}=\frac{1}{2} C_{\phi \phi}^{3,3 *} \frac{v^{2}}{\Lambda^{2}} ; g_{L}=\sqrt{2} C_{d W}^{3,3 *} \frac{v^{2}}{\Lambda^{2}} ; g_{R}=\sqrt{2} C_{u W}^{3,3} \frac{v^{2}}{\Lambda^{2}}
$$

W Helicity Fractions

Eur. Phys. J. C 77 (2017) 264
The standard W Helicity fractions are extracted in $t \bar{t}$ events. 1 lepton plus 4 jets (2 b-tagged) plus missing E_{T}.

Template fit to distribution in angle between lepton and helicity axis in W rest frame.

Systematic uncertainty somewhat larger than statistical. Largest systematic for F_{0} is MC template statistics.

$$
\begin{aligned}
& \left.\mathrm{F}_{0}=0.709 \pm 0.012 \text { (stat.+bkg. norm.) }\right)_{-0.014}^{+0.015} \text { (syst.) } \\
& \left.\mathrm{F}_{\mathrm{L}}=0.299 \pm 0.008 \text { (stat.+bkg. norm.) }\right)_{-0.012}^{+0.013} \text { (syst.) } \\
& \mathrm{F}_{\mathrm{R}}=-0.008 \pm 0.006 \text { (stat.+bkg. norm.) } \pm 0.012 \text { (syst.) }
\end{aligned}
$$

Constraints from W-Helicity Fractions

Eur. Phys. J. C 77 (2017) 264 arXiv:1612.02577

W-helicity measurements can be used to constrain anomalous couplings. This plot shows tight constraints in g_{R} vs g_{L}.

There are assumptions that the two coupling not shown are fixed to their SM values, and the ones shown are purely real. If these assumptions are removed, most of the plane is allowed.

If one examines a different set, of couplings one see that helicity fractions are sensitive to ratios of couplings. They very precisely determine two allowed regions in $\mathrm{g}_{\mathrm{R}} / \mathrm{V}_{\mathrm{L}}$.

Again, if one releases the assumptions on the other two couplings, the interpretation becomes more complicated.
arXiv:1612.02577

Top decay distribution can be fully expressed in terms of 4 Helicity amplitudes

$$
\begin{array}{ll}
\lambda_{\mathrm{b}}=1 / 2, \lambda_{\mathrm{w}}=0,1 . & \begin{array}{l}
\lambda \text { represents the helicity } \\
\text { fractions of } b \text { quark and }
\end{array} \\
\lambda_{\mathrm{b}}=-1 / 2, \lambda_{\mathrm{w}}=0,-1 . & \begin{array}{l}
W \text { boson. } A_{\lambda \mathrm{w}, \mathrm{~b}} \text { is the } \\
\text { decay amplitude. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{N} \frac{d N}{d \Omega d \Omega^{*}}=\frac{1}{(4 \pi)^{2}}\left[\frac{3}{4}\left|A_{1, \frac{1}{2}}\right|^{2} \underset{(1+P \cos \theta)\left(1+\cos \theta^{*}\right)^{2}}{\leftarrow} \mathrm{~F}_{\mathrm{L}}\right. \\
& \begin{array}{l}
+\frac{3}{4}\left|A_{-1,-\frac{1}{2}}\right|^{2} \stackrel{(1-P \cos \theta)\left(1-\cos \theta^{*}\right)^{2}}{\leftarrow} \\
+\frac{3}{2}\left(\left|A_{0, \frac{1}{2}}\right|^{2} \leftarrow(1-P \cos \theta)+\left|A_{0,-\frac{1}{2}}\right|^{2}{ }^{2}(1+P \cos \theta)\right) \sin ^{2} \theta^{*}
\end{array} \\
& -\frac{3 \sqrt{2}}{2} P \sin \theta \sin \theta^{*}\left(1+\cos \theta^{*}\right) \Re\left(e^{i \phi^{*}} A_{1, \frac{1}{2}} A_{0, \frac{1}{2}}^{*}\right) \\
& \left.-\frac{3 \sqrt{2}}{2} P \sin \theta \sin \theta^{*}\left(1-\cos \theta^{*}\right) \Re\left(e^{-i \phi^{*}} A_{-1,-\frac{1}{2}} A_{0,-\frac{1}{2}}^{*}\right)\right],
\end{aligned}
$$

The full triple differential decay distribution is determined in t-channel single-top events by measuring coefficients of orthogonal functions of θ, θ^{*}, and ϕ^{*}.

JHEP 12 (2017) 017 arXiv:1707.05393

Terms in Black: measured by W-Helicity analyses
Terms in Green: also measure relative phase between amplitudes
Terms in Red: measures polarization and different combinations of amplitudes

Extracted Observables

JHEP 12 (2017) 017 arXiv:1707.05393
Likelihood is calculated numerically in full 6-d space of parameters

Two 2-d and one 1-d profiles shown here

$$
\begin{aligned}
f_{1} & =\frac{\left|A_{-1,-\frac{1}{2}}\right|^{2}+\left|A_{1, \frac{1}{2}}\right|^{2}}{\left|A_{-1,-\frac{1}{2}}\right|^{2}+\left|A_{0,-\frac{1}{2}}\right|^{2}+\left|A_{0, \frac{1}{2}}\right|^{2}+1} \\
f_{1}^{+} & =\frac{\left|A_{1, \frac{1}{2}}\right|^{2}}{\left|A_{-1,-\frac{1}{2}}\right|^{2}+\left|A_{1, \frac{1}{2}}\right|^{2}}=\frac{F_{R}}{F_{R}+F_{L}}
\end{aligned}
$$

$f_{0}^{+}=\frac{\left|A_{0, \frac{1}{2}}\right|^{2}}{\left|A_{0,-\frac{1}{2}}\right|^{2}+\left|A_{0, \frac{1}{2}}\right|^{2}}$ Not previously measured
$\delta_{-}=\arg A_{-1,-\frac{1}{2}} A_{0,-\frac{1}{2}}^{*} \quad$ Non-zero phase could imply CP-violation
$\delta_{+}=\arg A_{1,-\frac{1}{2}} A_{0, \frac{1}{2}}^{*}$
$P=$ top polarization

JHEP 12 (2017) 017 arXiv:1707.05393

In the analysis with single-top, all assumptions on the couplings are removed, we explicitly state the result as ratios of couplings, and $\mathrm{V}_{\mathrm{R}}, \mathrm{g}_{\mathrm{L}}$, and g_{R}. are allowed to be complex.
f_{1}^{+}and f_{0}^{+}are determined by different linear combinations of g_{L} and V_{R}. In this case it is not conservative to fix one to its SM value when setting limits on the other. One needs the full correlation.

Summary

- ATLAS has many top FCNC results.
- The full Run 2 data set will allow for more sensitivity to BSM physics.
- Will need to keep control of systematics for $\mathrm{t} \rightarrow \mathrm{Zq}$ and $\mathrm{t} \rightarrow \mathrm{gq}$
- The FCNC results have been used to provide constraints on couplings/EFT coefficients.
- Anomalous couplings/EFT also extracted from W Helicity measurements in $t \bar{t}$ events and from triple differential decay distributions in single-top events.
- Correlations are important.
- A top sub-group has been formed in ATLAS to more fully examine ways to extract EFT coefficients from the wealth of top data to be extracted in Run 2 and beyond.

