

The GeneROOT Project Status and Plans

Fons Rademakers CERN openIab Chief Research Officer

GeneROOT - Using ROOT for Handling Genomics Data

King College London - TwinsUK Project

- Collaboration between the KCL and CERN openlab
- Try to optimize genomics data storage and processing using HEP tools
- Working on a local 400TB copy of TwinsUK data
 - 750 Monozygotic twins
 - 900 Dizygotic twins
 - 138 Singletons

3

Rapidly Increasing Amount of Genomics Data

- Next generation Sequencing (NGS)
 - Dramatic increase in the amount of data
 - Improved data confidence
- NGS is enabler for more sophisticated research questions in Genomics

Issue: Leaps in sequencing technology have outperformed advances in computing

Growth of DNA Sequencing

Growth of DNA sequencing data both in terms sequenced human genomes and total sequencing capacity

. Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, "Big data: Astronomical or genomical?", Plos biology, vol. 13, no. 7, e1002195, 2015.

5

SAM - Sequence Alignment/Map

• Text-based format for storing biological sequences aligned to a reference one

• SAM - Plaintext

openiab

• BAM - Binary Compressed

111 131 121 (CAGTARCOTAACACACACGTAASTCHTAACCCGTCGCCCAACGTCGTCHECAACGTTACCCGTECCATITACCCCHEC A COC TAKE SEA & COTTAKE THE ASCUT COCCUPATION OF Bine MCCGGCCM ACCC GITACECICEATIACCELCEC E GYTER CELEBRA O CELEBRA CHICA CALCACTERIZZIA CON CELEBRANCI CINCILLE INTO A <u>(Floitestas or locestor coloro</u> CIPACECIFACECIFACEGACCCCIFACECCIFECCCEACCIFETCICE (ECCLAMENTAGE CETAMESTAAPEE FIGGE BAAREING TELET CAAPE FREED <u> (Raif ben mat Grander For Eganda fulg Ditemas The Egradiat an</u> Mecchecemente di Cmeme mecchech mecch i a l'he ar fhith i mire fhin a cheanna a shan th' se mer a a

Challenge: data size is extremely large (about 500GB for a single human genome)

Genomic data size will overtake LHC data in the coming years

SAM Example

CNLASH INAL CTA

 $\cap \circ \circ$

ษรษ	SIN: CHIM	LIN	T/COT										
0SQ	SN:chrX	LN:	155270	560									
SOLEXA-	1GA-2_2	0	chr1	10145	25	36M	*	0	0	AACCCCTAACCCTAACCCTAACCCTA	hhhhHcWhhHTghcKA_ONhAAEEBZ		
SOLEXA-	1GA-2_2	0	chr1	10148	25	36M	*	0	0	CCCTAACCCTAACCCTAACCCTAACC	hbfhhhXUYhT_ULZdLRTKNIMIKG	NM:i:0	
SOLEXA-	1GA-2_2	16	chr1	10149	25	36M	*	0	0	CCAAACACTAACCCTAACCCTAACCC	><>B@>?>?D>>?B?D>DBC?E@BDH	NM:i:1	X1:i:1
SOLEXA-	1GA-2 2	0	chr1	10150	25	36M	*	0	0	СТААСССТАААССТААСССТААСССТ	hhW X]MXNOHQQWMILHGIFMJGJ		

The file consists of a header section (lines starting with a @) and an alignment section with 11 mandatory fields + several optional fields

A human genome SAM file consist of about 1 billion lines in the alignement section and is about 500GB large

BAM - Binary Alignment/Map

- BGZF is block compression implemented on top of the standard gzip file format
- File is gunzip compatible
- Each 64KB block of data is compressed and added to the file
- Using an .bai index file, random access is supported in the BAM file

ROOT Framework

Don't reinvent the wheel

Most of the challenges with massive data processing are common to HEP. **ROOT** has decades of experience in software design and optimisation

openiab

Conversion - SAM to ROOT

We convert from TAB-delimited SAM format to a ROOT TTree

SOLEXA-1GA-2_2_FC28EH8:5:251:979:328	8	chr1	10145	25	36M	٠	8	8	AACCCCTAACCCTAACCCTAACCCTAACCCTAAACT	hhhhHcwhhHTghcKA_0NhAAEEBZE?H?CBC?DA	Miii1	X1rir1	MD:Z:33A
SOLEXA-1GA-2_2_FC20EH8:5:102:214:278		chr1	10148	25	36M	*			CCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC	h6fhhhXUYhT_ULZdLRTINIMIK6LJCHFFJQJN	NM:1:0	X0:i:1	MD:Z:36
SOLEXA-1GA-2_2_FC28EH8:5:195:284:685	16	chr1	10149	25	36M		8	8	CCAAACACTAACCCTAACCCTAACCCTAACCTAACC	><>Bg>?>?D>>?B?D>DBC?EgBDMAKCEKERL00	Mri:1	X1rir1	MD1Z129A
SOLEXA-1GA-2_2_FC20EM8:5:35:583:827		chr1	10150	25	36M	*			CTAACCCTAAACCTAACCCTAACCCTAACCCTAACCA	hnw_x]MXNOHQQMMILHGIFMJGJLCFGGJAKIEH	NM:1:1	X1:i:1	MD:Z:10A
SOLEXA-1GA-2_2_FC20EMB:5:248:130:724	0	chr1	10152	25	36M		8	8	AACCCTAACCCTAACCCCAACCCTAACCCTAACCCTA	hchPhccWS [VR0bRXDT0USJLX0A@LGFMC@	Mri:1	X1rir1	MD:Z:17C
SOLEXA-1GA-2_2_FC20EM8:5:236:644:107	16	chr1	10154	25	36M	*			CCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC	ICF=A@BHGEGGDFLIKKYYGD^CalMaShfNNhhh	NM:1:0	X0:i:1	MD:Z:36
SOLEXA-1GA-2_2_FC20EMB:5:165:628:70	16	chr1	10155	25	36M		8	8	CCTAACCCTAACCCTAACCTTTACATAACCCTAACC	>D?BAEAA?E=JGGBK>FKDGFJPVIISFTT\QQMch	Mri:1	X1rir1	MD:Z:11A
SOLEXA-1GA-2_2_FC20EM8:5:108:485:455	16	chr1	10156	25	36M	*			CTAACCCTAACCCTAACCCTAACATAACCCTAACCC	CFVIUIIIbGPROGhRhhhIhhhhhhhhhhhhhh	NM:1:1	X1:::1	MD:Z:12A
S0LEXA-1GA-2_2_FC20EMB:5:240:501:237	8	chr1	10158	25	36M		8	8	AACCCTAACCCTAACCCTAACCCTAACCCTAACCATA	hhhchg_ORNbX]RMZLREQMNTNFLDPMDDDEDKL	NM:i:1	X1rir1	MD1Z133A
SOLEXA-1GA-2_2_FC20EH8:5:258:882:389	16	chr1	10215	25	36M	*			CTAACCCTAAACCTAACCCCTAACCCTAACCCTAAA	IMZ0>?EGDRRhhdxxWRZKhhhhhhhhhhhhhh	NM:1:1	X1:::1	MD:Z:25A
SOLEXA-1GA-2_2_FC20EMB:5:197:509:870	16	chr1	18216	25	36M		8	8	TAAACCGAACCCGAACCCCTAACCCTAACCCTAAAC	<ijelcgscumy?r?d\upw^gd]h00w\hhhhhlh< td=""><td>NM:i:1</td><td>X1rir1</td><td>MD1Z123G</td></ijelcgscumy?r?d\upw^gd]h00w\hhhhhlh<>	NM:i:1	X1rir1	MD1Z123G
SOLEXA-1GA-2_2_FC20EM8:5:160:880:612		chr1	10217	25	36M	*			AACCCTAACCCTAACTCCTAACCCTAACCCTAAACA	hhnnh\0[WUNYQKOWNSIIDNFOPKJHIAI@GDJG	NM:1:1	X1:::1	MD:Z:15T
SOLEXA-1GA-2_2_FC28EH8:5:249:922:888	16	chr1	18217	25	36M		8	8	AACACTAACCCCAACCCCTAACCCTAACCCTAAACA	hKwQRBhhB``Ah`hhhhhhhhhhhhhhhhhhhhhh	NM:1:1	X1rir1	MD:Z:8A2
SOLEXA-1GA-2_2_FC20EH8:5:13:922:731		chr1	10236	25	36M	*			GACCCANACCCTANACCCTANACCCTANACCTANCC	NMNWZaPTSZHFUMMSOJTJEKLKELKKDJ>JPCEI	NM:1:1	X1:i:1	MD:Z:0G4
SOLEXA-1GA-2_2_FC20EMB:5:62:877:892	16	chr1	18237	25	36M		8	8	ACCCCAACCCTACACCCTACACCCTAACCCTAACCC	CHLKEQGOUcCQ' GYdhF [hXhhhwhhhhhhhhhhhhhh	NM:1:1	X1rir1	MD:Z:16C
SOLEXA-1GA-2_2_FC20EH8:5:172:417:550	16	chr1	10242	25	36M	*			AACCCTAAACCCTAACCCTAACCCTAACCCTAACCCTAACC	B&BA>=EG>B&CANEDBEKBMGRCMKVJTORShKhh	NM:1:0	X0:i:1	MD:Z:36
SOLEXA-1GA-2_2_FC28EM8:5:129:615:872		chr1	10243	25	36M		8	8	ACCCTAAACCCTAAACCCTAACCCTAACCCTAACCC	ghhhhhZ^h]hWeh\^SZ_QOUVL\:QWLTQJOMII	NM:1:0	X0:i:1	MD1Z136
SOLEXA-1GA-2_2_FC20EM8:5:223:388:145		chr1	10244	25	36M	*			CCCTANACCCTANCCCTAACCCTAACCCTAACCCT	g[WhhhUHMOdWTIRNJSIGHHILLJJBFMB>?B?F	NM:1:0	X0:i:1	MD:Z:36
SOLEXA-1GA-2_2_FC20EMB:5:196:950:794	16	chr1	18247	25	36M		8	8	AAAACCCAAAACCCTAACCCTAACCCTAACCCTAAC	LV_KJ@c^Pf00ghThKahh`hhhhhhhhhhhhhh	Mri:1	X1rir1	MD1Z128A
SOLEXA-1GA-2_2_FC20EM8:5:6:541:676	16	chr1	10316	25	36M	*			ATCACCAACCCTAACCCCTAACCCTAACCCTAACCC	P7XLX?UGCKEHXJeU [hDVNa [hYQGhhhVhIhhh	NM:1:1	X1:i:1	MD:Z:32A
SOLEXA-1GA-2_2_FC20EM8:5:32:129:784	8	chr1	10316	25	36M	٠	8	8	CACCCCAACCCTAACCCCTAACCCTCACCCTAACCC	hhhhhhhhhhcchhhhhhhhZh] lhf^ghQ^THY	Mri:1	X1rir1	MD:Z:8C2

ROOT handles compression, memory buffers, datatypes, endian-ness, etc.

The columns are defined using a C++ class.

CERN openia

Performance - SAM to ROOT

There is a tradeoff between compression and read/write speed for 100GB file.

With ZLIB compression -> 4 times faster With LZMA compression conversion -> 15% smaller

View - Random Access

- We also need to be able to view the information as fast as possible
- ROOT columnar structure allow us to just look at the chromosome and position columns to optimize performance

	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1					
	chr1	16236				
	chr1	16237				
	chr1	16242				
	chr1	16243				

Indexing For Fast Access

- Improve read speed by using an index
 - For random access BAM format needs a BAI index file
 - For ROOT implemented a RAMIndex, sparse index in combination with fast columnar ROOT file scanning
 - 16 bytes per entry, compressed

```
class RAMIndex {
private:
   typedef std::pair<int,int> Key_t; // refid (of rname) and pos
   typedef std::map<Key_t,Long64_t> Index_t; // map of Key_t and TTree entry number
   Index_t fIndex;
   ...
};
```


View - Performance

View - Performance

Viewing 3 different regions from a 9-18 GB file

Future Work

- Increase file sample The study was done on only one base SAM file (subsampled to 10% and 1%). Conversion, indexing and views should be run on different SAM files so sample bias is reduced
- Extended format comparison The current work compared only to the well established BAM format. However, comparisons to formats such as CRAM should be made to see the relative performances in compression rate and speed and read speed, respectively
- Support for additional operations Add to ramtools support for sort, merge, split or stats.
- FASTQ/FASTA conversion The raw sequencer data format. Simpler but closely resembling SAM. Most of the TTree advantages apply also to this type of data. In fact, recent research in formats like LFQC has many analogies to how ROOT branches are used to compress data fields separately, optimizing compression and read speed.

CERN openlab GeneROOT Technology Transfer Benefits

- Additional use case for CERN's ROOT technology
- Return flow of know-how benefiting the ROOT User community
- CERN openlab provides a doctoral student who gains valuable experience
- Entire Omics community would benefit from improved analysis tools to handle rapidly growing amounts of data
- Project is joint effort between CERN openlab, CERN medical applications group, King's College London
- Big thank you to my 2017 openlab summer student Jose Javier Gonzalez Ortiz

