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• CERN IT Department (Openlab and IT-DB) 

• Fermilab 

• The CMS Experiment 

• Intel 

• DIANA-HEP

Who is participating in the project?

Collaboration Members
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• Perform High Energy Physics (HEP) Analytics using Industry Standard Big 
Data Technologies 

• Investigate and experiment with new ways to analyze HEP data 

• Produce end-to-end solutions for physics analytics

What are we trying to do?

Project Description
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• Test the feasibility of the industry standard general purpose processing engines 
for the HEP Data Processing. 

• Find methods to reduce time to physics for the PB and EB datasets 

• Improve computing resource utilization. 

• Educate academy researches (graduate students, postdocs, etc.) in the use of 
Big Data Technologies 

• Open up the HEP field to a larger community of data scientists

Why are we doing it?

Project Motivation
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• c++ / python based workflows 

• ROOT I/O  

• ROOT Histogramming (Aggregating) Functionality 

• Batch Processing - Custom Workload Distribution

What is currently being used by the CMS experiment?

HEP Data Processing
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• scala / python based workflows with JVM as the primary execution 
environment 

• Lazy evaluation and Code Generation per given Query. 

• ROOT I/O for JVM! 

• Easy scale-out of workflows 

• No additional boiler plate for managing batches for ML training.

How are Apache Spark workflows different?

HEP Data Processing with Apache Spark
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• spark-root - ROOT I/O for JVM 

• Extends Apache Spark’s Data Source API 

• Maps each ROOT TTree to Dataset[Row] 
• A single TTree => Dataset[Row] 

• Parallelization = # ROOT files. 

• API is uniform all the Data Sources!

How do we ingest data into Apache Spark Dataset API?

Data Ingestion: spark-root 0.1.16 available on Maven Central!

Scala 

// inject the Dataset[Row] 
import org.dianahep.sparkroot.experimental._ 
val df = spark.read.option(“tree”, <treeName>).root(“<path/to/file>”) 

// pretty print of the schema 
df.printSchema 

|-- Particle: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- fUniqueID: integer (nullable = true)
 |    |    |-- fBits: integer (nullable = true)
 |    |    |-- PID: integer (nullable = true)
 |    |    |-- Status: integer (nullable = true)
 |    |    |-- IsPU: integer (nullable = true)
 |    |    |-- M1: integer (nullable = true)
 |    |    |-- M2: integer (nullable = true)
 |    |    |-- D1: integer (nullable = true)
 |    |    |-- D2: integer (nullable = true)
 |    |    |-- Charge: integer (nullable = true)
 |    |    |-- Mass: float (nullable = true)
 |    |    |-- E: float (nullable = true)
 |    |    |-- Px: float (nullable = true)
 |    |    |-- Py: float (nullable = true)
 |    |    |-- Pz: float (nullable = true)
 |    |    |-- PT: float (nullable = true)
 |    |    |-- Eta: float (nullable = true)
 |    |    |-- Phi: float (nullable = true)
 |    |    |-- Rapidity: float (nullable = true)
 |    |    |-- T: float (nullable = true)
 |    |    |-- X: float (nullable = true)
 |    |    |-- Y: float (nullable = true)
 |    |    |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)
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• CMS Public 2010 Muonia Dataset 

• 100+ top columns (branches) 

• Very complicated nestedness 
• AoS of AoS 

• Tested on several TBs of data 
across > 1K input ROOT files

Let’s tackle real collisions data from the CMS Experiment data with Apache Spark?!

Data Processing: CMS Open Data Example

|-- patMuons_slimmedMuons__RECO_: struct (nullable = true)
 |    |-- present: boolean (nullable = true)
 |    |-- patMuons_slimmedMuons__RECO_obj: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- m_state: struct (nullable = true)
 |    |    |    |    |-- vertex_: struct (nullable = true)
 |    |    |    |    |    |-- fCoordinates: struct (nullable = 
true)
 |    |    |    |    |    |    |-- fX: float (nullable = true)
 |    |    |    |    |    |    |-- fY: float (nullable = true)
 |    |    |    |    |    |    |-- fZ: float (nullable = true)
 |    |    |    |    |-- p4Polar_: struct (nullable = true)
 |    |    |    |    |    |-- fCoordinates: struct (nullable = 
true)
 |    |    |    |    |    |    |-- fPt: float (nullable = true)
 |    |    |    |    |    |    |-- fEta: float (nullable = true)
 |    |    |    |    |    |    |-- fPhi: float (nullable = true)
 |    |    |    |    |    |    |-- fM: float (nullable = true)
 |    |    |    |    |-- qx3_: integer (nullable = true)
 |    |    |    |    |-- pdgId_: integer (nullable = true)
 |    |    |    |    |-- status_: integer (nullable = true)
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Data Processing: CMS Open Data Example

# read in the data 
df = sqlContext.read\ 

.format(“org.dianahep.sparkroot.experimental”)\ 

.load(“hdfs:/path/to/files/*.root”) 

# count the number of rows: 
df.count() 

# select only muons 
muons = 
df.select(“patMuons_slimmedMuons__RECO_.patMuons_slim
medMuons__RECO_obj.m_state”).toDF(“muons”) 

# map each event to an invariant mass 
inv_masses = muons.rdd.map(toInvMass) 

# Use histogrammar to perform aggregations 
empty = histogrammar.Bin(200, 0, 200, lambda row: row.mass) 
h_inv_masses = inv_masses.aggregate(empty,  

histogrammar.increment,  
histogrammar.combine)

Let’s calculate the invariant mass of a di-muon system?!

• Transform a collection of muons to an 
invariant mass for each Row (Event). 

• Aggregate (histogram) over the entire dataset.
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Data Processing: Feature Engineering
Let’s build a feature engineering pipeline for ML Classification using Apache Spark?!

• Simulated Collision Events with: 
• Tracks, Hadrons, Photons, etc. 

• ~10TB of input ROOT files  
• Step1: Build a 2D matrix of high level features 

• Step2: Build an image  

• Step3: Train various classifiers 
• With BigDL / DL4J / mixed solutions 

• Step4: Perform Inference 

• All steps are performed using the same 
Apache Spark Dataset API

A single image represents a single physics collision
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Data Ingestion: EOS vs HDFS
But what if physics data is on EOS -> hadoop-xrootd!

• “hadoop-XRootD Connector” is a library that connects to the XRootD client 
via JNI 

• It reads files from EOS directly. 
• Avoid copy to/from hdfs! 

• Soon to be published to GitHub!

EOS 
Storage 
System Xrootd 

Client
JNI

Hadoop 
HDFS 
Spark 

(analytix
)

Hadoop-
XrootD 

Connector

EOS 
Storage 
System XrootD 

Client JNI

C++ Java



12

Data Ingestion: EOS vs HDFS
But what if physics data is on EOS -> hadoop-xrootd!

• Running 2 identical pipelines (input is ~1TB): reading from hdfs vs eos. 
• Reading ROOT files from both file systems works well 
• Throughtput is currently 2-3 times higher reading from hdfs 
• Further optimization of the I/O part is necessary
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Cluster Infrastructure: CERN Analytix
Where do we run our large scale analyses?

We use the “analytix" Cluster which is provided by the CERN IT Hadoop Service. 

Investigating running Apache Spark without Hadoop layer (using kubernetes) 

Cluster Characteristics: 
Hadoop Version: 2.6.0-cdh5.7.6 
HDFS Capacity: 4.32 PB 
Cores: ~1200 
Memory: 4.11 TB 
Number of Nodes: 40 
High Availability: Enabled
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Recent Talks and Publications

• CMS Analysis and Data Reduction with Apache Spark 
• Proceedings for the 18th International Workshop on Advanced Computing and Analysis Techniques in Physics 

Research (ACAT 2017) 
• arXiv:1711.00375 

• Physics Data Analytics and Data Reduction with Apache Spark 
• 10th Extremely Large Databases Conference 

• Status and Plans of the CMS Big Data Project 
• CERN Database Futures Workshop 

• More talks and publications -> https://cms-big-data.github.io/pages/
pubsntalks.html

https://arxiv.org/abs/1711.00375
https://cms-big-data.github.io/pages/pubsntalks.html
https://cms-big-data.github.io/pages/pubsntalks.html
https://cms-big-data.github.io/pages/pubsntalks.html
https://cms-big-data.github.io/pages/pubsntalks.html
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General Outlook
A rather personal view on the use of Apache Spark for HEP Data Processing

• Extremely User Friendly! 
• Easy to port python based HEP analyses. 
• Easy to get started 
• Interactive analysis through python/scala shell or jupyter/zeppelin notebooks. 

• Easy to scale out your analysis 
• It is just a matter of launching a job on a cluster vs launching locally on a laptop! 

• Young Technology and flexible codebase  

• Huge user community and adoption in industry 

• Scala is a beautiful language! Although python is the right choice for ML.
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General Outlook
A rather personal view on the use of Apache Spark for HEP Data Processing

• Apache Spark is optimized for simple tabular schemas. 
• Deeply nested data structures like collection of physics objects -> suboptimal 

performance. 
• Currently, no means to work efficiently with linear or associative containers 

• A lot of parameters have to be optimized for Apache Spark Workflows 
• Garbage Collection Pauses 
• other JVM parameters 
• suboptimal single thread performance w.r.t. c++ based processing
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Future Work
How do we plan to move forward?

• We do have ROOT I/O for JVM -> have to improve / optimize / support! 

• Experiment with ML Frameworks: Intel BigDL 

• Scale out -> investigate the scalability up to 1PB (so far tens of TBs) 

• Optimize various workflow specific parameters (Garbage Collection, etc.) 

• Investigate the use of Apache Spark on HPC Systems! 

• Leverage Intel® CoFluent™ Technology to perform cluster level optimizations!



18

Questions?

viktor.khristenko@cern.ch

mailto:viktor.khristenko@cern.ch
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Backup

• spark-root GitHub: https://github.com/diana-hep/spark-root 

• histogrammar GitHub: https://github.com/histogrammar/histogrammar-scala 

• CMS Big Data Project: https://cms-big-data.github.io

https://github.com/diana-hep/spark-root
https://github.com/histogrammar/histogrammar-scala
https://mmm.cern.ch/owa/redir.aspx?C=_3BpsWpL3rU-_Zp1hy5I-ZBjDkF8HbvdzVUfzo_7wiFmAabLLFnVCA..&URL=https%3a%2f%2fcms-big-data.github.io

