

Smart Data for Industrial Control Systems

CERN Technical Workshop

Filippo Tilaro, Fernando Varela (BE/ICS) in collaboration with Siemens AG CT Munich, St. Petersburg, Brasov 09/01/2018

Data Analytics for Industrial Controls

Take advantage of control data

Control Data analytics

Design analytics algorithms

- Expert systems
- Machine learning to deal with heterogeneous control systems

Big Data platform to improve:

- ✓ Control system stability and efficiency
- ✓ Reduce maintenance cost
- Large scale performances (even physic data quality)
- ✓ Reliability and Safety

Use cases and Algorithms

- LHC Circuit Monitoring
- Tank leak detection in Cooling and Ventilation

Online monitoring of the LHC control systems

Condition monitoring use-cases

> LHC Circuit Monitoring

- Online analyse the power converter circuits signals and the system status in order to assess their health and detect anomalies
- > Condition Monitoring for Cryogenics
 - Online analysis of the LHC superconducting magnets pressure, temperature measurements and the openings of their related valves
- > Analysis of control systems alarms based on custom indexes

LHC circuit monitoring

Condition monitoring analysis (in collaboration with TE-MPE)

- > Main Goal: evaluation of the superconducting circuits health
 - Degradation after 20 years of operations
 - Monitoring conditions: anomalous change of current flows, impedance, circuit functioning ...
- > Different analyses:
 - Scheduled analysis depending on the machine cycles, e.g. during the energy ramp, during the energy extraction, etc.
 - Continuous Analysis to check the circuits health
 - **Replay of historical data** for qualification and validation
- > Electrical circuits:
 - magnets, power converters, switches ...
- > **Different** working **phases**:
 - anomaly detection
 - 'energy' unload and
 - 'fail-safe

LHC circuit monitoring control infrastructure

Supervision layer:

- > WinCC OA
- > 16 servers

Control layer:

- 44 industrial FECs
- Readout (from 10KHz to 1Hz)
- RBAC access
- Time sync
- Post-Mortem buffer
- CMW

>

Field layer:

- 2800 radiation-hard devices
- WorldFIP fieldbus
- Fast readout and protection for magnets and powering circuits
 - Signals number: 60 * 4000 QPS + 60 * 2000 FGC systems

LHC circuit monitoring analysis

Condition monitoring analysis

- > Expert system
 - Translate experts' knowledge into formulation sets / rules
 - Asset-based description
 - Rules central storage
 - Rule template to be reused, parametrized, validated
- > Signal Processing Language (SPL):
 - Domain specific language (DSL)
 - Simple formulation
 - Time reasoning and temporal expression
 - Mathematical and logical functions
 - Event emitter/ handler
 - Alarms
 - Trigger of rules chain

New DSL under implementation: SEPL!

Rule definition: Truth(sma(I_Meas, 1m30s)> I_Min)): duration(>=1h)

Cooling and ventilation control system

Leak detection in Tanks (in collaboration with BE-ICS-AP)

- > Anomaly detection based on historical data
- > Dual factors analysis:
 - Valve opening time
 - Time between valve openings
- > Dynamic control
 - Different alarms thresholds
 - Changing filling conditions
- > Detection of "large" leaks:
 - Anomalous valve opening time
- > Detection of "small" leaks:
 - Anomalous time interval between valve openings
- > Outlier identification based on time distribution of and between valves opening!

CERN Openlab SIEMENS

Analytical platforms

- DCEP and ELVis integration
- Industrial IoT support
- MindSphere

Smart Data for Industrial Control Systems

Combining cloud and edge computing into a single framework

Industrial IoT islands

Fully autonomous DCEP cluster that can interoperate with other IIoT islands

- > Industrial IoT analytical benefits:
 - Shorter latency for online analysis
 - Reduced network load
 - Industrial modelling/segmentation
 - Increased reliability
- > Siemens involvement:
 - New collaboration with an IIoT group
 - Existing collaboration with the cloud computing group
- > Multi-platform support
 - Raspberry Pi, Siemens IoT 2020/2040, …

DCEP Industrial IoT islands

IOT support in the analytical framework

> Dynamic device registration

- Compatible with the control system structure
- Sensors description
- Available resources
- Dynamic configuration

> Service discovery

- Services endpoints
- Permitted operations
- Event subscription
- Dynamic update due to device mobility

> Data ingestion:

Openlab SIEMENS

- From field devices and SCADA
- Multi-protocol support
- Time synchronization
- Reduced impact on Industrial Controls
 - Network load across the nodes/SCADA
 - Not invasive fieldbus communication

MindSphere

Cloud-based Platform as a Service (PaaS) provided by Siemens

- > Evaluating analytical modules:
 - Sensors validation
 - Anomaly detection in sensors measurements
 - Control process assessment and availability
 - Condition monitoring system based on KPIs
- > Integration with CERN control systems
 - Web services to upload and run analytical modules
 - Open API
- > Migration of CERN analytical algorithm to MindSphere
 - Implementation of the PID evaluation in the Siemens web service domain

Summary

- Different CERN use-cases
 - Expert systems for LHC circuit monitoring and anomaly detection in CV
- New analytical platform for both cloud and edge computing
 - Deployment and integration with CERN control systems
- SEPL to support for numerical and text analysis
- MindSphere
 - Cloud-based Platform as a Service (PaaS) provided by Siemens

2017 data analytics publications in international conferences:

- An expert knowledge based methodology for online detection of signal oscillations CIVEMSA 2017, F. Tilaro, M. Gonzalez, B. Bradu, M. Roshchin
- Model Learning Algorithms for Faulty Sensors Detection in CERN Control Systems ICALEPCS 2017, F. Tilaro, B. Bradu, F. Varela, M. Roshchin
- Automatic PID Performance Monitoring Applied to LHC Cryogenics ICALEPCS 2017, B. Bradu, E. Blanco, F. Tilaro, R. Marti
- Data Analytics Reporting Tool for CERN SCADA Systems ICALEPCS 2017, P. J. Seweryn, M. Gonzalez-Berges, J. B. Schofield, F. M. Tilaro

CERN BE-ICS https://be-dep-ics.web.cern.ch/

