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CERN long standing tradition of collaboration with industry and research institutes

<|l|i

CMS experiment and LHCb experiment engaged a partnership with IBM with the objective
to improve operations, detector reconstruction and to generate benchmarking
technological results, respectively.

In this joint talk we are going to present the research goals, agreed within the CERN
Openlab framework, how we hope they will mature and be achieved through a
collaborative contribution of technologies and/or resources.

Virginia Azzolini, on behalf of CMS collaboration
Daniel Hugo Campora Pérez, on behalf of LHCb collaboration
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# openlab CMS - IBM partnershi

Improve Data Quality Monitoring (DQM) operations:
Monitors and ensures data quality of each data
Anomaly detection
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The current system works but

expensive, in terms of human resources
Online : 8h shift, 24/7 + the effort to train her, maintain instructions, etc

volume budget problem

There is a limit to the amount of quantities that a human can process in a finite time
interval. Summary dashboard plus 15 subsystem dedicated ones. This can cause delay
in spotting a problem or cause a transient problem to be overlooked

It makes assumptions on our level of understanding
the quantities are compared against a pre-defined reference visually or via automatic
threshold checking. Static threshold, led by actual conditions understanding, do not scale

Strategy tailored to certain failure modes,
the certain set of quantities monitored might not have enough discriminatory power
against all the possible problems

Virginia Azzolini
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"’f apaniab Project goals

intelligent
Integrate Machine Learning technique in the current Data Quality monitoring tools and
operations, to make them less expensive in term of human intervention and more efficient

ce » ~ “4Run #%» ~ LS # Event #
281'639 . 130 . 216380968 .

predictive _
develop a demo application e Nion Sep 36 16, 07:46

for anomaly detection purposes

using Deep learning technique §
(phase 1: see following slides) S
E
proactive 2
integrate detector metadata (a.k.a. subsystems readiness to take data ( Detector Control
System LOW /HV voltage)) into the ML-application
for a more omni-comprehensive monitoring of the
detector. | | - L. ._ -
Predictivity of hardware failures. 1 AlA | ISUR Z 3
Recursive NN S fi koA ol e ®
(phase 2: second half of 2018, not yet started) § ec =
350
E.g.LHC*: predict one step ahead | | xeo
Time (step 0.4 s) 5

* monitoring the LHC magnets - DS@QHEP oL ..
https://indico.fnal.gov/event/13497/ Virginia  Azzolini
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'-;-‘ openlab ECAL( phase 1) :

from rules to unsupervised interpretation ===
ECAL ARREL 5echit occupancy

ECAL DQM plots divided into:

Task histograms: purely statistical description

ECAL BARREL timing map

Client histograms: provide quality interpretation ..
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Rule-based DQM
. Quality thresholds based on basic operating envelopes of detector

. Difficult anticipate every way the detector can go wrong, especially with different levels of granularity
. More rules = more code complexity

ML-based DQM
. Unsupervised learning of quality interpretation

. Could potentially flag any “unusual” looking features in Task-histograms and interpret it accordingly
in Client-histograms

. Could eliminate need for hand-coded rules

Virginia Azzolini



=¥, CERN

v opens® Method, feature, dataset and metric

Semi-supervised learning:
Auto-Encoder with convolutional layers, in framework Keras library (tensorflow backend),
trained on normal instances™ only assuming imbalance of normal/anomalous instances

Feature:
Monitoring temperature maps of the ECAL detector: rechit occupancy and timing plots
EE- rechit occupancy

| e e gy s |
Entries 184846

BARREL rechit occupancy EE+ rechit occupancy
B ST R T R T e ] 941614 T £SOt

ntri
lean x 180.7 2100
lean y -0.687

104.1 0
80
70! '

100 150 200 10 20 30 40 50 60 70 B0 90 100
ix

Dataset: emulation of the online DQM running conditions, producing one sample ( set of
images) per LumiSection**

Loss is the metric :
Good instances should be reconstructed with low loss
Bad instances should be reconstructed with higher loss

*Current dataset : ~40000 samples from 2016 data from lumisections marked as good
** Lumisection: minimum quantum in data taking time 7

Virginia Azzolini
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ECAL barrel rechit occupancy map:

GOOD input image

100 48
125
150

AE model output, image reconstruction

AE Model: GOOD input and output

0 =T = |
= [ L =
i | " & ~‘.--‘ = '
= ' n,f s BP* L
100 '. | & .
125 - ‘ . :‘ 'l
150 - - . ' =
o= T , i i , -,l
0 50 00 150 200 250 300 350

Model seems to generalize well as far as reconstructing images are concerned.

similar testing and training loss spectrum

We want in reality detect anomalies — (next slide) we look at BAD input images

Virginia Azzolini
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"'-T‘-’ openls®  AE Model 0: BAD input and output

ECAL barrel rechit occupancy map:

.||I
L
@

2AD input image ( Ecal hot tower*) AE model output, image reconstruction
07

25

30 50
5 75
100 100
125 125
150 150

® good data
© baddata

Model is able to 'detect’ hot towers

and

reconstructs images containing hot towers

with a loss spectrum different from good images

loss
@

Roc(TP_vs_FP)_AUC is >0.99 o . o

Missing module( test in backup):
results not so good. Investigating different pre-processing techniques and more sophisticated models 9

*simulated images Virginia Azzolini
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new Models and future tests

. ongoing tests:
model 0: Auto-encoder with convolutional layers, in framework Keras library (tensorflow
backend)

. trained on gpu, batch size of 30

. 60:20:20 split of train:test:validation

. Patience =5

. Optimizer: Gradient Descent (learning rate 0.01),

. Loss Function: Binary-Cross Entropy loss

model 1: more layers, small batch size (to avoid memory gpu bottlenecks)
No decrease in loss, trains faster probably due to smaller batch size
model 2: more more layers, less pooling in the NN
obligation to increase patience to reach the same performance of less layers

. future steps:

increase training size, possibility to include 2017 data

include anomalous examples and evaluate model on them

test more sophisticated networks (e.g. bigger autoencoders with sparsity constraints), use
other images besides occupancy(e.g. timing), compare performances with other
supervised technique ( e.g. SVM)

10

Virginia Azzolini
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s openiab LHCb-IBM partnership THCD

The Ring-imaging Cherenkov (RICH) detectors determine the velocity of particles coming

from proton-proton collisions at the LHCb detector at CERN. When particles pass by a
C4F10 radiator gas, they emit cones of photons whose angle is linked to the particle
speed and particle type. These photons are reflected in two mirrors prior to being
detected in Hybrid Photo-Detectors (HPDs), translating into an array of pixels.

(b)

2
(b) :
@d -7 ;
300 #% 1500 ,/
Y/
3 E J - LANI
120mrad ____ - / A’ﬁ;{f
—1000
Beam pipe
Mirrors < ; |
—500
Gas (CF,) o T
Photodetectors
1 I 1 1 1 1 | 1000 1500 2000
6 8 {m) 10 12

Z (mm)

Figure 2.21: Simulated Cherenkov photons in the upper half of the upgraded RICH1; (a) 3D

view, (b) 2D view in the vertical plane.

11
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These pixels can then be associated to their corresponding track. The radius of the found
circle will determine the particle type (PID).

This problem can then be translated into a classification problem, from the input data
(pixels, momenta and track segment “centroid”) into a particle type (pion, kaon, muon,
proton, electron).

corrected local y
I

-200 0 200
corrected local x

Virginia Azzolini
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Goal

i

Over the upcoming year we will study the feasibility of a RICH reconstruction based off
Al-driven techniques. A Convolutional Neural Network is a good candidate to tackle this

problem, separately for each segment, given a momentum cut.
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Virginia Azzolini
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IBM signed in 2017 the framework agreement for a CERN - IBM collaboration

<||I

Future project agreement between IBM, CMS, LHCb and CERN with Openlab as facilitator
will be signed soon. It will focus on the 2 main topics:

. CMS - IBM: Improve the Data Quality Monitoring operations
.. Looking toward a more performing monitoring:
. development of a demonstration application
. inclusion of machine metadata to foreseen hardware failures
... partnership with IBM will benefit on 2 levels:
. share of powerful hardware for trial use to support CMS ML efforts
. access to manpower long standing expertise to advise and complement our
understandings

. LHCDb - IBM: Study the ability to reconstruct RICH with A.l. techniques
.. Installing the server at the moment, just received it

.. Analyzing the data, reading literature, forming a small team

... partnership with IBM will be very beneficial to LHCb as well

Questions?

Contact me: azzolini@cern.ch Cb 14
Or the e-group: cms-ml4ddgm@cern.ch
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DQM system used in |
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Data Quality Assessment

1) near-real-time applications

(,:) . fraction of the events with a rate of about 100 Hz
<§E < . automatic tests are validated via visual human inspection
oC . identify problems in the detector and trigger system
|_ @ Raw
:) —g T% Physics stream
< HLThhnusneamé g Dam s“igxap'iflesssieam - = — . — } Rﬂ""
= 2)fast reconstruction on a part of data ' 4 '.-‘ i d <
Z HLT eIVa! DQM Tler!J ne B
5 . subset of the data promptly reconstructed DAQ VTJ” L @P5 | | cooress promot | | geco [I
=g and monitored with ~1h _, , I 1 § 1. B
o’ . goodness of the data regarding also 2 d § | : NV g :
= the reconstruction software and Dgﬂ"gb fé Stfd- ! Fetst- 'IDgf;j:'g?” i
the alignment and calibration constants % % % @
" Validators Onlmeshlftersl n PronoF cetiass G C!EI‘[IfICEItIOn Experts !
i 3) full reconstructed data fregres | | @ s Y
i VAL " Online Run , " Offline Runliofﬂine Run 0
i . fU” Set Of data taken promptly reconstructed DB |_ Registry I—| Registry r; Registry ‘ |
3 and monitored with ~48h latency Velq e T s
&S . same aim as 2), but typically better alignment _ eriified data
O and calibration constants are available
U’ 3-bis) reprocessed data once per year or at need
. data are again monitored and certified
= . same aim as 2) and 3), but typically
better reconstruction software and
better alignment and calibration constants are available
On the side: release validation on Monte Carlo production, 17

. validate functionalities and performance of the reconstruction software Virginia Azzolini



What we monitor for Quality Assessment

Online DQM: mostly focused on Hardware level checks

. integrity of the data-format, errors from the read-out electronics
count errors, classify errors, monitor # of errors vs LS

. occupancy of signals (hits) in the various channels
maps and distributions in the detector
presence of noisy/dead read-out channels

. distribution of energy/momentum/time of the signals

. resolution plots, pulls

Offline Data Certification: principally focus on Physics
. detector subsystem:
..Certify the correctness of detector calibration and alignment application,
these conditions are recalculated una tantum, because statistics dependent
Almost same distributions as online

. physics objects (muon, electron, photons, tracks, jets)
.. Monitoring quantities product of the reconstruction, ingredient of future analysis
(# vertices, 3 tracks, energy, typology, topology of the particles, key quantities
Summary and occupancy maps
Distribution of quantities used to characterize the candidate particles

18

Virginia Azzolini
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| e Dataset

00d.

. Current dataset consists of ~40000 samples from 2016 data from lumisections marked as goo
(2016 goldenjson , CMSSW_9 2 11) [Thanks to Tanmay & Michael from ECAL DQM team]

. The dataset (SingleElectron/RAW) is processed to emulate the online DQM running conditions and
produce one sample (set of images) per lumisection ( Most of the RAW data required for this has
been moved to TAPE. Was able to acquire only 40k images. Plan to add more images using
2017 data in the near future.)

. The current image set per sample consists of rechit occupancy and timing plots: one for barrel and
one each for both endcaps.

as b — EEOT rec hit occupancy EE + EFOT rae hit neriinaney FE
EBOT rec hit ocoupan pancy s hit necinane -
EEOT rec hit ocoupancy EE

] T ¥ .
;s At il Entries 94161 100 - i =
AR o Mr; alnx - = Erfios 102004 EEOT rec hit occupancy EE
. Meanx  49.62 100
il Meany 4130628 Meany 5043 ="F
; 80 o RMS x 21.92 90—
= g RMSy  21.88 E

70

EEDT roc nt occupaney EE -
Entries 184846
Meanx  49.74
Meany 4936 (
RMS x 218
RMS y 21.7

90

RM

60

50

40

100
X

" 150 200 250 300

50 100

PREPROCESSING The only preprocessmg that was done was to norme

integral. The holes in the plot are usually due to permanently
masked channels/towers and network can be expected
to learn that they are ok. 19
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| Input Images

Task histograms

170, 360
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Client histograms

34,72

EBOT rec hit occupancy

EBOT rec hit occupancy
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EBTMT timing map

EBTMT timing map
Entries 16682
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?.Tsopenlab Method, metric and dataset (baCkUp)

Semi-supervised learning:

Assuming that normal instances occur much more frequently than anomalous instances,
use only normal instances™ to train a convolutional Auto-Encoder (input is mapped to
output, the system learns to reconstruct the input with minimum loss ) to minimize the loss
function.

Monitoring temperature maps of the detector: rechit occupancy and timing plots: one for
barrel and one each for both endcaps. © =

941614
180.7

Dataset: emulation of the online DQM running conditions, producing one sample ( set of
images) per LumiSection™

Loss is the metric :
Good instances should be reconstructed with low loss
Bad instances should be reconstructed with higher loss

*Current dataset : ~40000 samples from 2016 data from lumisections marked as good 22
** Lumisection: minimum quantum in data taking time Virginia Azzolini
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input_1: InputLayer

> Auto-encoder with convolutional layers

conv2zd_1: Conv2ZD

> Conv2D (8 channels,(3x3) patches)—
MaxPooling2D(2, 2)—Conv2D (8 ,(3x3))—
MaxPooling2D(5, 5)—Conv2D (8 ,(3x3))— conv2d_2: ConvaD
UpSampling2D(5, 5)—Conv2D (8 ,(3x3))—
UpSampling2D(2, 2)—Conv2D (8 ,(3x3))

max_pooling2d__1: MaxPooling2D

max_pooling2d_2: MaxPooling2D

conv2d_3: Conv2D

> All Conv layers are ‘padded’ to keep size of output
Channels Same aS input. up_sampling2d_1: UpSampling2D

conv2d_4: Conv2D

> FrameworkUsed: up_sampling2d_2: UpSampling2D
Keras library using tensorflow backend

conv2zd_5: ConvZD

23
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"T" °rer®Model 0: training performance and Loss &

. Auto-encoder with convolutional layers, in framework Keras library using tensorflo

backend

. Trained on gpu, batch size of 30

. 60:20:20 split of train:test:validation
. Patience =5

. Optimizer: Gradient Descent (learning rate 0.01).

1000 o
800

600

. Loss Function: Binary-Cross Entropy loss ]

autoencoder_v0_sgd_training_loss_v_epoch
le-3

final training loss: 2.708e-04

training loss vs epoch

6 2‘0 80 100
autoencoder_v0_sgd_test
autoencoder_v0_sgd_train

mean: 2.71e-04, std: 8.14e-08

1 trainin

mean: 2.71e-04, std: 9.59e-08 min: 2.70307413e-04

min: 2.68878517e-04 max: 2.70982957e-04

max: 2.72255769e-04

o
706 2.708 2.7 2,703 2.704 2.705 . 2,706 2,707 2.708 2.709 2.715 .
binary cross-entropy loss le- binary cross-entropy loss e—

ongoing tests: small batch size, more layers, less pooling, bigger patience
future tests: increase training size, evaluate model on anomalous examples, test more
sophisticated networks, use other images besides occupancy(e.g. timing), compare

performances with other supervised technique

24
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| Training performance

> Trained on gpu, batch size of 30

> 60:20:20 split of train:test:validation

> Patience =5 (Number of epochs to wait in which validation loss doesn’t decrease by a
minimum threshold (0.05%) before stopping training)

> Optimizer: Gradient Descent (learning rate 0.01), Loss Function: Binary-Cross Entropy
loss

autoencoder_v0_sgd_training_loss_v_batch autoencoder_v0_sgd_training_loss_v_epoch autoencoder_v0_sgd_validation_loss_v_epoch
le-1 le-3 le-3

final training loss: 2.708e-04 final training loss: 2.708e-04

0.8 1 final training loss: 2.705e-04

e
~

0.24

0.04

T T T T T
101 10? 10} 10* 108
batch

T T T
60 80 100

epoch

validation_loss

=4
=3

o
(=]
L

4
o=
L

o
w
L

T T T
60 80 100

epoch
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| Loss as metric

> Evaluate trained model over (each sample) training and test sets and
histogram the reconstruction loss

autoencoder_v0_sgd_train autoencoder _v0 _sgd_test
1000 A
mean: 2.71e-04, std: 9.59e-08 200 4 mean: 2.71e-04, std: 8.14e-08
min: 2.68878517e-04 min: 2.70307413e-04
800 - 175
max: 2.72255769%e-04 max: 2.70982957e-04
150 4
600 125 4
3 3
® “ 100
400
75 1
50 |
200
25 1
0 T 0-
2.704 2.706 2.708 2.710 2703 2704 2705 2,706 27707 2,708 2709 2.710
binary cross-entropy loss le—4 binary cross-entropy loss le—4

> Training and test sets have similar performance.

26
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autoencoder_v0_adam_validation_loss_v_epoch

le-4

Choosing a better optimizer

> Tried several other optimizers available within the KERAS library:

ADAM, ADAM with Nesterov, RMSPROP, ADADELTA etc.

final training loss: 1.964e-04

T T T T T T
5 10 15 20 25 30
epoch

validation_loss

autoencoder_v0_adadelta_validation_loss_v_epoch
le—4

2.6475 1

26450+

2.6425

P N
o o
o} B
-~ [=]
w S

2.6350

263257

2.6300

final training loss: 2.631e-04

T
2

T
4

T T T
6 8 10
epoch

validation_loss

autoencoder_v0_rmsprop_validation_loss_v_epoch

le—4

1.976 4

1974 4

1972 4

1.970 4

1.968 4

1.966

final training loss: 1.966e-04

T T T T T
5 10 15 20 25

epoch

Chose ADAM optimizer based on validation loss, rmsprop has similar performance

> Training and test sets

have similar
performance.

a.u.

1000

autoencoder_v0_adam_train

800

(=]

00

400 A

200 4

2.0

binary cross-entropy loss

mean: 1.96e-04, std: 2.98e-09
min: 1.96367648e-04

max: 1.96457819%e-04

3.5 4.0 4.5
le—8+1.964e—4

autoencoder_v0_adam_test

2001

2.0

mean: 1.96e-04, std: 2.54e-09
min: 1.96423323e-04

max: 1.96443259e-04

2.5 3.0 3.5 4.0
binary cross-entropy loss le—8+1.964e—4
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> Had to decrease batch size to 20,

was hitting gpu memory
bottleneck (I think)

* Adding more layers: model 1

1= open

input_1: InputLayer

: Conv2D

conv2d_1

max_pooling2d_1: MaxPooling2D

> No decrease in loss, trains faster
probably due to smaller batch size.

autoencoder_v1l_adam_validation_loss_v_epoch

1072 4

1073 1

validation_loss

final training loss: 1.964e-04

conv2d_2: Conv2D

conv2d_3: Conv2D

max_pooling2d_2: MaxPooling2D

conv2d_4: Conv2D

conv2d_5: Conv2D

up_sampling2d_I: UpSampling2D

conv2d_6: Conv2D

: Conv2D

conv2d_7

up_sampling2d_2: UpSampling2D

conv2d_8: Conv2D

conv2d_9: Conv2D

<|||
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“see Even more layers, less poolinga
mode] 2

> Final train/val loss is worse with respect to model
version 1, with the same patience

input_I: InputLayer

.|||i

‘ max_pooling2d_1: MaxPooling2D ‘

> Increasing patience helps decrease loss to similar
value as mode v1.

autoencoder_v22_adam_validation_loss_v_epoch autoencoder_v23_adam_validation_loss_v_epoch
le—10+2.63466e-4 le—4
o
final training loss: 2.635e-04 1.9660 - final training loss: 1.964e-04
"l
@ 7] » 1.9655 -
o =]
¢ !
o o
:
T; ',—é 1.9650
54
1.9645 -
44
T T T T T T T T T T T ‘ up_sampling2d_1: UpSampling2D ‘
2 3 4 5 6 7 5 10 15 20 25
epoch epoch

conv2d_10: Conv2D

Patience=5 Patience=20
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< openlab NeXt Steps

> Gather some anomalous examples and evaluate the model on them
> Compare their loss spectrum to that of normal examples
> Increase training set size.

> Try more sophisticated networks: bigger autoencoders with sparsity
constraints etc.

> Use other images besides occupancy (e.g. timing) as input.

> Try other (supervised) learning techniques (e.g.- SVMs ) and compare
performance.
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ECAL barrel rechit occupancy map:

Bad input image ( Ecal missing module)

AE Model 0, BAD input and output

AE model output image reconstruction
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loss spectrum over several such images”* vs loss spectrum of good test images

reconstructed loss spectrums

are not that different,

doesn't really succeed in catching
the missing modules

Results is not correct:

® good data

s bad data Hf
N

L= i

0.5
044 &
0.3

0.2 4 .
#

0.1

T T T T T
0.0 0.5 10 15 2.0
event le3

reconstruction appears to blur out the edges of the missing module but overall does a similar job as when
reconstructing good images. investigating different pre-processing techniques and more sophisticated models

Virginia Azzolini
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Maximize the best Quality Data for physics analysis

Improve Data Quality Monitoring (DQM):
Monitors and ensures data quality of each data
Measuring data properties
Anomaly detection

CMS Integrated Luminosity, pp, 2017, Vs = 13 TeV

Data included from 2017-05-30 08:43 to 2017-11-10 14:09 UTC

: ‘ » — 60 LHC Delivered Luminosity
@45 | Il LHC Delivered: 50.96 b
© \| 1 CMS Recorded: 46.02 fb !

B=3.8 T, validated: 42.71 !

CMS Recorded Luminosity

| Preliminary Offline Luminosity

g
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= 30 {30 Minimize this gap
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5 20 120 Maximize good data
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Date (UTC
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