

Electron cloud studies intermediate results for WP4

L. Mether, G. Rumolo

Acknowledgements: I. Bellafont, E. Belli, G. Iadarola, R. Kersevan, D. Schulte

EuroCirCol meeting CERN 9-10 October2017

Outline

- Introduction
- Where is beam screen coating needed?
- Constraints on photoelectron (photon) flux
- Summary

Introduction

Secondary Electron Emission can drive an avalanche multiplication effect, filling the beam chamber with an electron cloud

Main concerns of electron cloud

- Transverse instabilities due to interaction between beam and electron cloud
- Emittance growth, tune shift and spread, beam losses
- Heat load and vacuum degradation due to electron flux on chamber wall

Constraints for beam screen and vacuum design?

Simulation studies

Main chamber of beam screen (2015 version), Cu surface

Electron cloud build-up for 25 ns, 12.5 ns and 5 ns beam

- Arc dipoles, quadrupoles and drifts
- Effect of photoelectrons

Secondary electron yield

• E-cloud build-up depends crucially on the Secondary Electron Yield (SEY) :

 $\delta(E) = \frac{I_{\text{emit}}}{I_{\text{imp}}(E)}$ Ratio between emitted and impacting electron current as a function of the energy of the impinging electrons

- It depends on surface properties and can be modified by surface treatments
- Also the history of the surface, in particular the accumulated electron dose
 - To a certain extent the e-cloud cures itself \rightarrow beam induced scrubbing

R. Cimino et al. Phys. Rev. Lett. **109**, 064801 – 2012 4

Multipacting threshold

- Multipacting threshold threshold SEY for exponential electron multiplication
 - Depends on chamber geometry,
 - Magnetic fields,
 - Beam energy and intensity,
 - Bunch spacing, train pattern
 - Surface SEY ...

Multipacting thresholds from build-up simulation

(defined as highest SEY without build-up)

	25	ns	12.	5 ns	5	ns
E [TeV]	3.3	50	3.3	50	3.3	50
Dipole	1.6	1.6	1.2	1.2	1.5	1.4
Quadrupole	1.2	1.3	1.0	1.1	1.1	1.1
Drift	1.8	1.8	1.2	1.2	1.5	1.4

Threshold for e-cloud instability

• Analytical estimate of **threshold electron density** for instability

$$ho_{e,th} = rac{2\gamma
u_s\omega_e\sigma_z/c}{\sqrt{3}KQr_0\beta L}$$
 with $\omega_e = \sqrt{rac{\lambda_p r_e c^2}{\sigma_y(\sigma_x + \sigma_y)}}$, $K = \omega_e\sigma_z/c$
 $Q = \min(\omega_e\sigma_z/c,7)$

Thresholds: 6 x 10¹⁰ m⁻³ at 3.3 TeV, 3.6 x 10¹¹ m⁻³ at 50 TeV

Above the multipacting threshold, central electron densities are above the instability threshold in virtually all cases \rightarrow need to stay below threshold

Outline

- Introduction
- Where is beam screen coating needed?
- Constraints on photoelectron (photon) flux
- Summary

Which SEY can we assume?

- In the lab SEY decreases with e-dose down to values around 1.1 1.2
- Spending ~ 1 year of operation on lowering the SEY, can we reach SEY ~ 1.1?
 - Scrubbing becomes slower for lower SEY...
- LHC relies on this assumption → doesn't fully work!
 - Current understanding indicates that some beam screens have reached ~1.1
 - But others remain at 1.3 1.4 (after LS1), and are no longer improving
- We don't know why

Dipoles

	25	ns	12.	5 ns	5	ns
E [TeV]	3.3	50	3.3	50	3.3	50
SEY threshold	1.6	1.6	1.2	1.2	1.5	1.4

- SEY = 1.4 should be enough for both 25 ns and 5 ns beams, 1.2 for 12.5 ns
- A coating to avoid build-up for all beams should cover full top and bottom

Quadrupole

	25	ns	12.	5 ns	5	ns
E [TeV]	3.3	50	3.3	50	3.3	50
SEY threshold	1.2	1.3	1.0	1.1	1.1	1.1

- For both 25 ns and 5 ns beams SEY = 1.1 OK, 12.5 ns beam requires SEY < 1.1
- Coating to avoid build-up would be needed on the sides (at 45°)

Drift

	25	ns	12.	5 ns	5	ns
E [TeV]	3.3	50	3.3	50	3.3	50
SEY threshold	1.8	1.8	1.2	1.2	1.5	1.4

- For 25 ns threshold is high \rightarrow should be OK without coating (without photoelectrons)
- Multipacting on all sides \rightarrow studies to determine necessary fraction of coating?

Outline

- Introduction
- Where is beam screen coating needed?
- Constraints on photoelectron (photon) flux
- Summary

Effect of photoelectrons

- The photoelectrons have a marginal effect on heat loads, but a significant effect on central densities below the multipacting threshold
 - Even with low SEY, electron densities can reach instability threshold due to photoelectrons, especially for the 12.5 and 5 ns beams

Heat load and central electron densities scaled to device length in half-cell

Photoelectrons in simulations

- In the build-up simulations, a given number of photoelectrons are generated for every bunch
- These electrons are initialized around the chamber with a \cos^2 distribution w.r.t. the angle ϕ from the SR impact point
- Modifications of the code to allow for e.g. a fixed number of electrons per chamber surface is on the list of things to do, but not yet implemented

Dipoles

- Effect of the number N_{pe} of initialized photoelectrons on central electron densities compared to the analytical threshold density for instability
- The corresponding photon flux N_{γ} into the chamber is determined by the photoelectron yield Y:

Central electron densities scaled to device length in half-cell

Quadrupoles

- In the quadrupole the multipacting thresholds are already very low
- It is mainly for the 5 ns beam that the photoelectrons could be a danger
 - E.g. for SEY = 1.1 and Y = 0.2, a photon flux of 1e13 p/s/cm² is too high, and 2e12 p/s/cm² is very close

Central electron densities scaled to device length in half-cell

Drift

- In drifts, also photoelectrons produced in ante-chamber may move into main chamber and lead to increased electron density
 - Here electrons are initialized at the slit to mimic this effect (the electron numbers include these electrons)
 - Eventually simulations including the slit should be done to study the effect dynamically

Central electron densities scaled to device length in half-cell

Summary

- Which parts of the beam screen need to be coated to avoid electron cloud depends strongly on the assumptions of the SEY behavior
 - In all cases, the 12.5 ns beam sets the most stringent constraints → relevant to know if this beam option is excluded
- In the quadrupoles SEY <= 1.1 is required in any case (SEY < 1.1 for 12.5 ns)
 - This would require a coating on the sides of the beam screen (at 45 degrees)
- Constraints on photoelectrons/photons depend on the photoelectron yield
 - For most cases about 1% of SR photons in the chamber should be acceptable
 - The dipoles with 12.5 ns beam, and quadrupoles with 5 ns beam set the strongest constraints
 - The drifts require further studies (also chamber shape etc should be known)
- The results depend on many assumptions, and are not final

Thank you

Simulation overview

Beam parameters							
Bunch spacing [ns]	25	12.5	5				
Bunch intensity [p+]	10 x 10 ¹⁰	5 x 10 ¹⁰	2 x 10 ¹⁰				
Norm. emittance [m]	2.2e-6	1.1e-6	0.44e-6				
Bunch length [m]	0.08						
Bunch train pattern	(50b +	(100b +	(250b + 60e)*4				
Main chamber of FCC	beam screen	24e)*4					

(2015 version), with Cu surface

Arc elements						
Dipole Quad Drift						
Field	16 T	444 T/m	-			
Length [m]	171.6	12.6	26.6			