

Status of FCC-hh collimation studies

R. Bruce

On behalf of many colleagues...

Collaboration

- Talk based on material from, and discussions with:
- CERN
 - W. Bartmann, S. Arsenyev, I. Besana, F. Burkart, F. Cerutti, M. Fiascaris, B.
 Goddard, A. Krainer, A. Langner, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson,
 S. Redaelli, D. Schulte, E. Skordis, M. Varasteh, Y. Zou
- IN2P3: LAL and IPNO
 - LAL: A. Faus Golfe, J. Molson (until 30/09/2017)
 - IPNO: L. Perrot
 - possible participation of LAPP-Annecy is under negotiation and a new PhD will join the LAL team
- FNAL
 - Y. Alexahin, E. Gianfelice, N. Mokhov, A. Narayanan, M. Syphers
- Apologies if I forgot anyone please let me know!

- Provide sufficient betatron cleaning to avoid spurious dumps and quenches, and without risk of collimator damage
 - Injection and top energy
 - Machine aperture needs to be sufficiently far behind collimator
- Provide sufficient momentum cleaning
- Provide passive protection in case of failures
 - Asynchronous beam dump, injection failures
- Help in optimizing the background from the machine to the experiments
- Protect machine elements from damaging radiation dose: concentration of dose in controlled areas
- All while keeping impedance under control

FCC collimation insertions

- First design of FCC-hh
 collimation system is a scaled
 up version of the LHC system
 (M. Fiascaris, S. Redaelli et al.)
 - Betatron collimation in IPJ
 - Momentum collimation in IPF

Betatron collimation design

- Keep layout, design and material of LHC collimators
- Scale β-functions and insertion length by factor 5 from the LHC

• Present baseline for betatron collimation - scaled from HL-LHC

	HL-LHC ε = 2.5 μm	FCC-hh ε = 2.2 μm
Primaries	6.7	7.2
Secondaries	9.1	9.7
TCDQ	10.6	11.4
Tertiaries	12.9	13.7
min. aperture	14.5	15.5

- Has been the priority so far
- Most critical case for quenches: top energy
- Worst case assumed: beam losses during a lifetime drop to 12 minutes, corresponding to a beam power of 11.8 MW at 50 TeV
 - Very challenging for the collimation system
- First step: tracking studies for loss maps
- Output: losses on aperture and collimators around the ring

- LHC Collimetion
- Comparison of different scattering models see talk J. Molson
- Leakage of losses from betatron collimators in IPJ most critical in downstream dispersion suppressor

- Most critical location for losses: DS of IPJ
- As for HL-LHC, introduce additional collimators (TCLDs) in the DS to catch these losses

Example: horizontal betatron cleaning

M. Fiascaris et al., Rome 2016

Energy deposition in the DS (cold magnets)

- FLUKA studies of energy deposition needed to assess quenches more details in talk A. Krainer
- IPJ DS (and all other cold elements) sufficiently protected by present collimation system

FLUKA studies of warm insertion

- Can the collimation system and warm elements absorb the large power load?
- FLUKA geometry of warm insertion region implemented
- FLUKA studies performed of energy deposition in the warm insertion (I. Besana et al.) using tracking as starting conditions

ТСР

Energy deposition in collimation insertion

• Sharing of power: betatron losses

I. Besana et al.

Power Fraction	Horizontal	Vertical
TCP and TCS jaws	5.1%	6.7%
Warm dipoles	16%	13.7%
Warm quadrupoles	4.6%	5.4%
Passive absorbers (TCAP)	8.6%	7.9%
Beam pipe	14.2%	14.2%
Tunnel wall	44.4%	44.9%
Other Elements	3.1%	3.3%
Neutrinos/E → m	4%	4%

As in LHC, only a small amount of total power is deposited in the collimators

critical

• Only primary collimators and the first secondary seem very

Collimator Jaws	Horizontal [kW]	Vertical [kW]		
Primaries				
TPC_D6L	0.02	14.7		
TPC_C6L	23.1	158.7		
TPC_B6L	209.0	260.8		
Secondaries				
TCSG_A6L	233.6	220.9		
TCSG_B5L	8.2	10.6		
TCSG_A5L	35.7	40.8		
TCSG_D4L	27.6	33		
TCSG_B4L	7.1	8.2		
TCSG_A4L	13.1	10.8		
TCSG_A4R	15.9	13.7		
TCSG_B5R	4.9	3.9		
TCSG_D5R	9.0	6.7		
TCSG_E ₅ R	15.7	10.9		
TCSG_6R	3.5	1.8		

I. Besana et al.

- Primary collimators: shortening the length could improve the load
- Warm dipoles: Can add shielding exchange at front face. Cooling / radiation damage to be studied
- Passive absorbers: Needs more detailed studies on design / cooling
- Tunnel wall absorbs almost half of energy deposited
 - Should study activation and dose
- First secondary collimator: thicker jaws decrease power load

Secondary collimator: try thicker jaws

- Energy deposition peak is not in active part of the jaw but in metallic plate
 - Try to make the jaw thicker to distribute energy more in low-Z active part

Design of thicker jaws for HL-LHC

• Collimator design with thicker jaws feasible - anyway developed for HL-LHC (TCLX)

L. Gentini et al.

• Total load on worst TCSG reduce by more than factor 2

	LHC jaws	Thicker jaws		
Collimator Jaws	Vertical [kW]	Vertical [kW]		
Primaries				
TPC_D6L	14.7	14.4		
TPC_C6L	158.7	156.7		
TPC_B6L	260.8	257.3		
	Secondaries			
TCSG_A6L	220.9	91.6		
TCSG_B5L	10.6	8.0		
TCSG_A5L	40.8	32.8		
TCSG_D4L	33	26.4		
TCSG_B4L	8.2	4.4		
TCSG_A4L	10.8	9.0		
TCSG_A4R	13.7	11.7		
TCSG_B5R	3.9	2.5		
TCSG_D5R	6.7	5.4		
TCSG_E5R	10.9	9.5		
TCSG_6R	1.8	1.6		

I. Besana et al.

Betatron cleaning at injection

- Obviously less critical than at top energy
- Does not seem too problematic even without DS collimators

B1H zoom in IPJ

- Geometrical aperture more critical than at top energy due to larger emittance
 - Studies A. Langner: using 15.5 sigma criterion for allowed aperture from HL-LHC, we are not within spec (13.2 sigma for the arc, and 11.4 sigma for the DS)
- Needs to be fixed! Possibilities:
 - Study stricter tolerances on optics, orbit, alignment than for HL-LHC.
 - Calculations of realistic losses for FCC, comparing with FCC quench limit, to refine criterion of allowed aperture - ongoing
 - Tighten cleaning hierarchy to allow smaller aperture.
 - Work on the beam screen design of the elements

Momentum cleaning

- Tracking studies at top energy show significant losses upstream of experiments
 possible need for re-optimization of system
 - Requirements less stringent for momentum cleaning at top energy

- Possibly most critical case: losses at start of ramp.
 - Proposed specification: Tolerate 1% beam loss over 10 s
 - Studies at injection ongoing
- Ongoing effort at Fermilab to improve energy collimation. See talk Y. Alexahin

Failure cases

- Studies starting in collaboration with the injection and dump team (F. Burkart, B. Goddard, E. Renner, W. Bartmann et al.)
- Asynchronous beam dump at top energy could potentially be very critical
 - Miskicked protons escaping the dump protection collimators risk to damage machine elements
 - Has been a main limitation for the LHC performance reach
- Planned to soon start detailed tracking studies
- Injection failure: to be discussed with injection team
- Other failure modes?

- Betatron cleaning at top energy
 - Cleaning efficiency and energy deposition in cold magnets under control
 - Energy deposition on collimators and warm magnets: some open points but good hope to solve them in next iterations
 - Aperture at injection is not sufficient several ideas being investigated, good hope to find a solution
- Momentum collimation:
 - Studies ongoing. Optimization of layout/optics might be needed, but less critical than betatron cleaning
- Beam failures:
 - Studies now starting in collaboration with dump team
- Points for future study: activation, radiation damage, design of shielding / absorbers, further optimization of optics, advanced collimation concepts (electron lens, crystals...)