Fermilab **ENERGY** Office of Science

Energy collimation studies

Yuri Alexahin (on behalf of FNAL – NIU team)EuroCirCol meeting9 October 2017

The Team

- N. Mokhov & M. Syphers (NIU) leaders,
- E. Gianfelice-Wendt optics design
- Y. Alexahin optics & collimation arrangement design
- I. Tropin MARS simulations & collimation arrangement design
- A. Narayanan (NIU PhD student) G4beamline and MARS simulations

Optics Modifications

Left: The starting optics is Collider dev/fcc hh dev.seq as found back in June 2017 Right: Eliana's optics modification – the merit factor D_x^2/β_x increased by 7 times

Quadrupole Strength Modification

	K _{old}	K_{new}		K _{old}	K _{new}
MQTL.12LF.H1	0.000546	0.000985	MQWC.A4R3.B1	-0.000238	-0.000251
MQ.12LF.H1	-0.002266	-0.002271	MQWC.B4R3.B1	-0.000238	-0.000251
MQTL.11LF.H1	0.000595	0.000159	MQWD.4R3.B1	0.000132	0.000129
MQ.11LF.H1	0.002277	0.002276	MQWC.C4R3.B1	-0.000238	-0.000251
MQDB.10LF.H1	-0.001511	-0.001520	MQWC.D4R3.B1	-0.000238	-0.000251
MQDA.9LF.H1	0.001651	0.001018	MQWC.E4R3.B1	-0.000238	-0.000251
MQDA.8LF.H1	-0.002349	-0.002473	MQWC.A5R3.B1	0.000250	0.000243
MQM.7LF.H1	0.001499	0.001491	MQWC.B5R3.B1	0.000250	0.000243
MQM.6LF.H1	-0.001541	-0.001535	MQWD.5R3.B1	0.000186	0.000166
MQTLM.F6L3.B1	0.000520	0.000510	MQWC.C5R3.B1	0.000250	0.000243
MQTLM.E6L3.B1	0.000520	0.000510	MQWC.D5R3.B1	0.000250	0.000243
MQTLM.D6L3.B1	0.000520	0.000510	MQWC.E5R3.B1	0.000250	0.000243
MQTLM.C6L3.B1	0.000520	0.000510	MQTLM.A6R3.B1	-0.000477	-0.000436
MQTLM.B6L3.B1	0.000520	0.000510	MQTLM.B6R3.B1	-0.000477	-0.000436
MQTLM.A6L3.B1	0.000520	0.000510	MQTLM.C6R3.B1	-0.000477	-0.000436
MQWC.E5L3.B1	-0.000250	-0.000243	MQTLM.D6R3.B1	-0.000477	-0.000436
MQWC.D5L3.B1	-0.000250	-0.000243	MQTLM.E6R3.B1	-0.000477	-0.000436
MQWC.C5L3.B1	-0.000250	-0.000243	MQTLM.F6R3.B1	-0.000477	-0.000436
MQWD.5L3.B1	0.000186	0.000131	MQM.6RF.H1	0.001440	0.001734
MQWC.B5L3.B1	-0.000250	-0.000243	MQM.7RF.H1	-0.001182	-0.001137
MQWC.A5L3.B1	-0.000250	-0.000243	MQDA.8RF.H1	0.001287	0.001045
MQWC.E4L3.B1	0.000238	0.000251	MQDA.9RF.H1	-0.001069	-0.000728
MQWC.D4L3.B1	0.000238	0.000251	MQDB.10RF.H1	0.001085	0.001048
MQWC.C4L3.B1	0.000238	0.000251	MQTL.11RF.H1	0.000636	0.001680
MQWD.4L3.B1	0.000132	0.000211	MQ.11RF.H1	-0.002268	-0.002273
MQWC.B4L3.B1	0.000238	0.000251	MQTL.12RF.H1	0.000184	0.002367
MQWC.A4L3.B1	0.000238	0.000251	MQ.12RF.H1	0.002268	0.002268

Optics Functions @ Collimators

Original design

Eliana's design

	s(m)	$eta_x(m)$	$\beta_y(m)$	$D_x(m)$	$\mu_x/2\pi$	$D_x^2/eta_x(m)$	$oldsymbol{eta}_{oldsymbol{x}}$	(m)	$eta_y(m)$	$D_x(m)$	$\mu_x/2\pi$	$D_x^2/eta_x(m)$
TCLD.10LF.H1	336.5	229.	467.	-0.4	0.486	0.001	17	0.	405.	0.1	0.456	0.000
TCLD.8LF.H1	497.8	1800.	1091.	6.3	0.968	0.022	16	52.	479.	2.4	0.583	0.037
TCP.6L3.B1	862.3	6553.	1052.	10.0	0.976	0.015	32	24.	454.	6.8	0.733	0.142
TCHSH.6L3.B1	866.0	6146.	1092.	9.6	0.976	0.015	30)6.	469.	6.6	0.735	0.142
TCAPA.6L3.B1	882.8	4459.	1281.	8.1	0.977	0.015	23	32.	540.	5.8	0.745	0.144
TCSG.5L3.B1	938.6	883.	1866.	3.3	0.982	0.012	8	2.	760.	3.2	0.813	0.127
TCSM.5L3.B1	943.2	737.	1871.	2.9	0.982	0.012	7	7.	761.	3.1	0.822	0.121
TCSG.4R3.B1	1364.7	2162.	260.	-6.0	1.474	0.017	4	9.	747.	-2.7	1.253	0.145
TCSM.4R3.B1	1369.2	2148.	258.	-6.0	1.474	0.017	5	1.	740.	-2.7	1.268	0.144
TCSG.A5R3.B1	1390.6	2190.	240.	-5.9	1.475	0.016	7	4.	673.	-3.0	1.324	0.120
TCSM.A5R3.B1	1395.1	2209.	236.	-5.8	1.476	0.015	8	2.	656.	-3.0	1.334	0.113
TCSG.B5R3.B1	1403.9	2245.	228.	-5.8	1.476	0.015	9	9.	624.	-3.2	1.349	0.101
TCSM.B5R3.B1	1408.4	2265.	224.	-5.8	1.477	0.015	11	.0.	608.	-3.2	1.356	0.095
TCLA.A5R3.B1	1473.5	2551.	194.	-5.6	1.481	0.012	36	<i>5</i> 0.	406.	-4.1	1.409	0.048
TCLA.B5R3.B1	1478.0	2572.	194.	-5.6	1.481	0.012	38	35.	395.	-4.2	1.411	0.046
TCLA.6R3.B1	1675.7	140.	1226.	-0.4	1.511	0.001	39	95.	634.	-2.3	1.458	0.013
TCLA.7R3.B1	1838.7	5494.	753.	9.9	1.972	0.018	14	4.	371.	3.1	1.625	0.066
TCLD.8RF.H1	2032.6	327.	378.	1.7	1.995	0.009	45	59.	445.	0.2	2.008	0.000
TCLD.10RF.H1	2193.9	4158.	46.	-7.4	2.467	0.013	10	38.	305.	-1.5	2.052	0.002

Warm Section Optics

Optics functions in warm section (from *bpm.6l3.b1* to *bpmwc.6r3.b1*) and trajectories of particles scattered in the primary collimator by 10µrad

Fermilab

Collimators for Preliminary Study

name	collim. plane	length (m)	position from warm start (m)	jaw distance (mm) from centerline	jaw angle (μrad) w.r.t. centerline
ТСР	h	2.5	43.75	10	-72.75
TSCH1	h	2.5	343.0	5	0
TSCV	V	2.0	545.47	3.6	0
TSCH2	h	2.5	732.82	9	0
TTV	V	1.5	888.65	2.5	0

Important Note:

Generally the contribution to the transverse impedance goes as $\beta_{x,y}/gap^3$, so for horizontal momentum collimator $Z_x \sim \beta_x/D_x^3$, while for the vertical $Z_y \sim 1/\beta_y^{1/2}$.

🛟 Fermilab

In Eliana's design both contributions are smaller!

7 10/9/2017 Y. Alexahin | FCC Momentum Collimation

G4beamline* Simulations

The goal of the study was to see if it is possible to eliminate protons with relative momentum deviation δ_p larger (by absolute value) than δ_{max} =0.0015 not allowing scattered protons with transverse amplitudes larger than 12 σ at 50 TeV to escape.

A G4BL input file was built that includes warm magnets and collimators as described on slides 2-3 which act on dp/p < 0 part of the halo. The gaps were calculated for δ_{max} =0.0015

Three values of dp/p were chosen: -0.0016, -0.0015 and -0.0014 For each dp/p value an ensemble of 10^4 particles was built based on MADX values of optics functions at the warm section entrance as

$$x = D_x \delta + \sqrt{2\beta_x I_x} \cos(\psi_x), \quad x' = D'_x \delta - \sqrt{2I_x / \beta_x} [\sin(\psi_x) + \alpha_x \cos(\psi_x)],$$

$$y = \sqrt{2\beta_y I_y} \cos(\psi_y), \quad y' = -\sqrt{2I_y / \beta_y} [\sin(\psi_y) + \alpha_y \cos(\psi_y)],$$

where the initial phases $\psi_{x,y}$ were randomly distributed in the interval (0, 2π), while action variables $I_{x,y}$ were distributed according to the exponential law with the average ε_{\perp} =4.1*10⁻¹¹m and truncation at 5σ amplitude ($I_{x,y}$ =12.5 ε_{\perp}). Protons that reached the end of the warm section were analysed.

🛠 Fermilab

*) T. Roberts, http://g4beamline.muonsinc.com

G4BL Tracking Results (30k protons total)

Distribution in the transverse amplitudes of surviving particles at the warm end, none survived of those with δ = -0.0016

🛠 Fermilab

Next steps

Limitations:

Present shape and dimensions of collimators and magnets are too simplistic.

Magnets work as "black holes": kill all particles entering iron.

No beamline enclosure, instead some disc absorbers put to kill off particles with large amplitudes.

Only 50 TeV case considered

To-do list with G4BL

More realistic configuration of collimators (may be shorter C + metallic?) More realistic sizes of the magnet iron yokes (w/o "kill" option) Additional absorbes for secondaries and low energy protons Energy deposition in collimators and magnets ("totalEnergy" command) Injection energy case Draft of the report

MARS model and simulations

MARS Unleashed!

Lattice file for warm section was created and checked by tracking protons with original collimators (?)

Proton trajectories in horizontal (left) and vertical (right) plane. MARS notations differ from conventional $x \leftrightarrow y$

🚰 Fermilab

TSCV (the right half) used in G4BL simulations

Since there is no elliptic apertures in G4beamline I had to invent something that would produce smaller impedance and collimate particles with large |dp/p| tighter:

Schematic view of the cross-section of the right half of the TSCV collimator acting on protons with $\delta_p < 0$. The red star shows the beam center while the teal ellipse shows the 12 σ envelope for $\delta_p = -0.0015$.