

Baseline EIR: Energy Deposition Studies for L* = 40m

Angelo Infantino, Jacqueline Keintzel, Francesco Cerutti CERN EN/STI-FDA FLUKA Team

European Organization for Nuclear Research (CERN), Geneva, Switzerland

- \succ Update of the beam optics (L*= 40 m)
- Update of the FLUKA model
- \succ Radiation load for L* = 40 m & comparison with L* = 45 m
- ➤ Summary

What's New: Optics and Lattice

Interaction Region parameters:

- Main interaction region (point A)
- ≻ L* = 40 m

Lattice:

Significant change from previous calculations for L* = 45 m (quadrupoles splitting) [Ref: M.I. Besana - Overview and Status of the Radiation Load Studies Focused on Magnets]

What's New: Apertures

TAS

- Length: 3.0 m
- Aperture: 40 mm diameter

Q1A and Q1B

- Magnetic Length/Field: 14.3 m 126 T/m gradient
- Aperture: 164 mm coil diameter + 15 mm tungsten (INERMET180) shielding

Q2A to Q2D

- Magnetic Length/Field: 12.5 m 101 T/m gradient
- Aperture: 210 mm coil diameter + 15 mm tungsten (INERMET180) shielding

Q3A and Q3B

- Magnetic Length/Field: 14.3 m 100 T/m gradient
- Aperture: 210 mm coil diameter + 15 mm tungsten (INERMET180) shielding

Orbit Corrector

- Magnetic Length/Field: 1.3 m
- Aperture: 210 mm coil diameter + 15 mm tungsten (INERMET180) shielding

D1A to D1C:

- Magnetic Length/Field: 12.5 m 1.9 T field
- Aperture: **170 mm** pole tip aperture + **5 mm** thick vacuum chamber

FLUKA model

A. Infantino

		Total Powe	er [kW] - Vertic	al Crossing		
	L* = 45 m			L* = 40 m		
Nagnet -	Total	Shielding	Cold Mass	Total	Shielding	Cold Mass
Q1	2.7	2.0	0.72	2.86	2.11	0.75
C1	0.14	0.11	0.04	0.07	0.05	0.02
Q2 A	0.5	0.34	0.14	0.52	0.39	0.13
Q2 B	2.15	1.6	0.51	2.04	1.57	0.47
Q3	1.8	1.4	0.4	2.09	1.61	0.48
C2	0.17	0.11	0.06	0.15	0.11	0.04

<u>Note:</u> Statistical error ~few percent

DIFFERENCES < 15%

		7	Total Power [kW] vertical crossing	7		
Magnet	Total	Shielding	Cold Mass	Magnet	Total	Shielding	Cold Mass
 Q1A	0.74	0.53	0.21	Q3A	0.77	0.57	0.2
Q1B	2.12	1.58	0.54	Q3B	1.32	1.04	0.28
C1	0.07	0.05	0.02	C3	0.15	0.11	0.04
Q2A	0.42	0.31	0.11	D1A	1.75		
Q2B	0.1	0.08	0.02	D1B	0.79		
Q2C	0.8	0.62	0.18	D1C	0.66		
Q2D	1.24	0.95	0.29				
C2	0.11	0.09	0.02				

<u>Note:</u> Statistical error ~few percent

Radiation Load: Power Loss Distribution

Radiation Load: Peak Power Density

[Ref: Daniel Schoerling - Review of peak power limits for high luminosity IR triplet magnets]

Radiation Load: Peak Dose for 5 ab⁻¹

Focused on Magnets

Baseline magnet dose limit: 30 MGy

[Ref: Daniel Schoerling - Review of peak power limits for high luminosity IR triplet magnets]

31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 distance from IP [m]

10

Radiation Load: Peak Dose for 5 ab⁻¹

Baseline magnet dose limit: 30 MGy

[Ref: Daniel Schoerling - Review of peak power limits for high luminosity IR triplet magnets]

- *Crossing scheme techniques* -> not useful due to symmetry
- *Aperture* -> currently, reduction from Q3! \geq
- *Return coils* -> avoid proximity to the beam \geq
- *Design of mask* -> to be carefully investigated

TAN Considerations

<u>Ref:</u> High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V. 0.1 (CERN-2017-007-M)

<u>TRIPLET</u>

- \checkmark L* = 40 m does not present a significant change in the total power deposition: difference from L* = 45 m within 15%
- ✓ Peak power density: max ~ 3.3 mW/cm³ (< limit 5 mW/cm3) and shift of the peak at the beginning of Q1B due to quadrupole splitting</p>
- ✓ Dose peak of ~65 MGy at the beginning of Q1B: crossing scheme techniques and shielding thickness can increase the magnet lifetime

<u>D1</u>

- ✓ *Power loss distribution* shows a peak at the beginning of the first module (D1A), with a max ~1 kW/m
- ✓ *Peak dose* in the coils is ~45 MGy
- ✓ Magnet lifetime and cooling: Different mitigation techniques might be adopted (e.g. increasing the aperture, mask at the beginning of D1A, return coil far from the beam)

Future actions: TAN + D2

- ✓ Implementation of the *optics up to the D2* is ongoing
- ✓ TAN design is under consideration

Angelo Infantino

CERN EN/STI-FDA FLUKA Team - R2E Project @angelo.infantino@cern.ch

Backup: Power Loss Distribution

55 mm Shielding V-Crossing: Power

Total power for 5 10³⁴ cm⁻²s⁻¹ [kW]:

Magnet	Total	Shielding	Cold Mass
Qı	4.1	3.7	0.37
Cı	0.061	0.056	0.005
Q2A	0.76	0.7	0.07
Q2B	2.3	2.1	0.17
Q3	2.5	2.3	0.18
C2	0.13	0.12	0.01
Ratio of	the pow	ver on the hick shield	cold mass

Ratio of the power on the cold mass wrt the 15 mm thick shielding case:

Q1	0.5	
Cı	0.11	
Q2A	0.5	
Q2B	0.3	
Q3	0.4	
C2	0.17	

Peak power density for 5 10³⁴ cm⁻²s⁻¹:

for baseline luminosity the maximum peak power is o.3 mWcm⁻³.

[Ref: M.I. Besana - Overview and Status of the Radiation Load Studies Focused on Magnets]

Backup: Power Loss Distribution

A. Infantino Section Baseline EIR: Energy Deposition Studies for L* = 40m EuroCirCol Meeting – CERN – 9-10 October 2017