

Low Luminosity Experimental Insertions

M. Hofer, M.I. Besana, F. Burkart, F. Cerutti, R. Martin, D. Schulte, R. Tomas

European Circular The Collider Energy-Frontier Study (EuroCirCol) project received funding has from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Status after FCC-Week 2017

- In the current 97.75 km long baseline layout, injection and low luminosity experiments are combined, similar as in the LHC
- Different to the LHC insertion, an asymmetric design was chosen, as it seems more favorable from a machine protection point of view
- This way, the injection protection elements are further away from the experiments

Optics

- For collision energy, optics is matched to a $\beta^* = 3 m$, Injection to $\beta^* = 27 m$ taking into account constraints to provide optimum efficiency of the protection elements
- Since FCC-Week 2017, only minor changes:
 β in kickers was increased and intra-beam spacing decreased to 204 mm
- Aperture model now includes tolerances (Courtesy A. Langner)
- Crossing angle during collision was kept at 39 μ rad, but with the current triplet aperture it could be increased to 90 μ rad while keeping the current β^*

Energy deposition

- All triplet quadrupoles have the same aperture and use a 10 mm thick tungsten shielding
- Sufficient to bring the peak power density in the triplet below the design limit of Nb₃Sn of 5 mW cm⁻³
- Concerning the integrated luminosity, $500 \ fb^{-1}$ seem feasible with the current baseline radiation limits

Current FCC-hh target radiation limits										
Baseline	30 MGy									
Ultimate (R&D Goal)	250 MGy									

Courtesy of M.I. Besana and F.Cerutti

Dynamic Aperture Studies

- Initial Dynamic Aperture Studies with magnetic errors in the triplet and a previous lattice version (L*=45m) showed high dynamic aperture both with and without crossing angle
- With crossing angle the DA was only slightly reduced

 Now checking the DA with the updated lattice, which includes the latest layout of the low luminosity insertions and the L*=40m EIR and magnetic errors in the separation and recombination dipoles

Dynamic Aperture

 For Dynamic aperture studies at collision energy, the systematic errors from the HL-LHC triplet quadrupole error table were adapted for the LLIR triplet quadrupoles

	Normal			Skew		
 Reference radius set to one third of the aperture (same as in HL-LHC) 		Q1a/b Q3a/b	Q2a/Q2b	Q1a/b Q3a/b	Q2a/Q2b	
	2	0	0	-1.254	-0.836	
• b_1 , b_2 , a_1 and a_2 harmonics turned off	6	-0.236	-0.370	0.088	0.059	
	10	-0.137	-0.128	0.003	0.002	
	14	-0.864	-0.866	-0.009	-0.006	

Systematic components at collision energy for the triplet quadrupoles

Dipole Field Quality

- To study the impact of magnetic errors on the DA in the superconducting separation- and recombination dipoles, the error tables from HL-LHC D1 and D2 were used
- Reference radius again set to one third of the aperture

	Να	ormal		Skew	
	D1	D2	D1	D2	
3	-0.900	3.00	0	0	
4	0	2.00	0	0	
5	0	-1.00	0	0	
7	0.400	-0.200	0	0	
9	-0.590	0.090	0	0	
11	0.470	0.030	0	0	
15	-0.040	0	0	0	

Systematic components at collision energy for the separation and recombination dipoles

Dynamic Aperture

- Sixtrack studies carried out at collision energy with
 - 60 seeds
 - 5 angles
 - Amplitude step size 2 σ
 - With and without crossing angle

Conclusions and Outlook

- Layout is unchanged since FCC-week and integrated in the FCC-hh lattice
- With currently used triplet shielding, the integrated luminosity for these experiments will be $500 fb^{-1}$
- Tracking studies with magnetic errors in the triplet quadrupoles and the superconducting separation- and recombination dipole show Dynamic Aperture above 23σ
- Orbit correction and coupling correction for these insertion should be refined
- Following up with Dynamic aperture studies including also magnetic errors in the main experiments

Thank you for your attention!

Triplet Field Quality in HL-LHC

CERN-ACC-2014-103

	Triplet field quality version 4 - May 20 2015 - R _{ref} =50 mm															
	Straight part										I	Ends	Integral			
			System	atic	i.		Unce	ertainty	Rar	ndom			Q1	/Q3	Q2	a/b
Normal	Geometric	Ass. & cool	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field	Conn. Side	Non conn. Side	Injection	High Field	Injection	High Field
2									10	10						
3	0.000	0.000	0.000	0.000	0.000	0.000	0.820	0.820	0.820	0.820			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.570	0.570	0.570	0.570			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.420	0.420	0.420	0.420			0.000	0.000	0.000	0.000
6	-2.200	0.900	0.660	-20.000	-21.300	-0.640	1.100	1.100	1.100	1.100	8.943	-0.025	-16.692	0.323	-18.593	-0.075
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.130	0.130	0.130			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0.070			0.000	0.000	0.000	0.000
10	-0.110	0.000	0.000	4.000	3.890	-0.110	0.200	0.200	0.200	0.200	-0.189	-0.821	3.119	-0.175	3.437	-0.148
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.018	0.018	0.018			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009	0.009	0.009			0.000	0.000	0.000	0.000
14	-0.790	0.000	-0.080	1.000	0.210	-0.870	0.023	0.023	0.023	0.023	-0.545	-1.083	0.033	-0.856	0.106	-0.862
Skew																
2									10.000	10.000	-31.342		-2.985	-2.985	-1.753	-1.753
3	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.430	0.430	0.430	0.430			0.000	0.000	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.310	0.310	0.310	0.310	2.209		0.210	0.210	0.124	0.124
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.110	0.110	0.110			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.080	0.080	0.080	0.080			0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.065		0.006	0.006	0.004	0.004
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.014	0.014	0.014			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.010	0.010	0.010	0.000		0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.005	-0.222	0.041	-0.021	-0.021	-0.012	-0.012
	Magne	tic length str	aight part		Q1/Q3	3.459	Q2a/b	6.409	Mag. L	en. Ends	0.400	0.341				

Triplet Field Quality in HL-LHC

- For these error tables, the weighted average of straights and end parts
- Magnetic lengths of the ends is assumed to be the same as in HL-LHC

	Low Luminosity Triplet Q1a/b Q3a/b Field Quality									
	Syste	matic	Uncer	tainty	Random					
Normal	Injection	High Field	Injection	High Field	Injection	High Field				
2	0.000	0.000	0.000	0.000	10.000	10.000				
3	0.000	0.000	0.820	0.820	0.820	0.820				
4	0.000	0.000	0.570	0.570	0.570	0.570				
5	0.000	0.000	0.420	0.420	0.420	0.420				
6	-19.365	-0.236	1.100	1.100	1.100	1.100				
7	0.000	0.000	0.190	0.190	0.190	0.190				
8	0.000	0.000	0.130	0.130	0.130	0.130				
9	0.000	0.000	0.070	0.070	0.070	0.070				
10	3.566	-0.137	0.200	0.200	0.200	0.200				
11	0.000	0.000	0.026	0.026	0.026	0.026				
12	0.000	0.000	0.018	0.018	0.018	0.018				
13	0.000	0.000	0.009	0.009	0.009	0.009				
14	0.136	-0.864	0.023	0.023	0.023	0.023				
Skew										
2	-1.254	-1.254	0.000	0.000	10.000	10.000				
3	0.000	0.000	0.650	0.650	0.650	0.650				
4	0.000	0.000	0.650	0.650	0.650	0.650				
5	0.000	0.000	0.430	0.430	0.430	0.430				
6	0.088	0.088	0.310	0.310	0.310	0.310				
7	0.000	0.000	0.190	0.190	0.190	0.190				
8	0.000	0.000	0.110	0.110	0.110	0.110				
9	0.000	0.000	0.080	0.080	0.080	0.080				
10	0.003	0.003	0.040	0.040	0.040	0.040				
11	0.000	0.000	0.026	0.026	0.026	0.026				
12	0.000	0.000	0.014	0.014	0.014	0.014				
13	0.000	0.000	0.010	0.010	0.010	0.010				
14	-0.009	-0.009	0.005	0.005	0.005	0.005				

	Low Luminosity Triplet Q2a/b Field Quality										
	Syste	matic	Uncer	rtainty	Random						
Normal	Injection High Field		Injection	High Field	Injection	High Field					
2	0.000	0.000	0.000	0.000	10.000	10.000					
3	0.000	0.000	0.820	0.820	0.820	0.820					
4	0.000	0.000	0.570	0.570	0.570	0.570					
5	0.000	0.000	0.420	0.420	0.420	0.420					
6	-20.010	-0.370	1.100	1.100	1.100	1.100					
7	0.000	0.000	0.190	0.190	0.190	0.190					
8	0.000	0.000	0.130	0.130	0.130	0.130					
9	0.000	0.000	0.070	0.070	0.070	0.070					
10	3.674	-0.128	0.200	0.200	0.200	0.200					
11	0.000	0.000	0.026	0.026	0.026	0.026					
12	0.000	0.000	0.018	0.018	0.018	0.018					
13	0.000	0.000	0.009	0.009	0.009	0.009					
14	0.160	-0.866	0.023	0.023	0.023	0.023					
Skew											
2	-0.836	-0.836	0.000	0.000	10.000	10.000					
3	0.000	0.000	0.650	0.650	0.650	0.650					
4	0.000	0.000	0.650	0.650	0.650	0.650					
5	0.000	0.000	0.430	0.430	0.430	0.430					
6	0.059	0.059	0.310	0.310	0.310	0.310					
7	0.000	0.000	0.190	0.190	0.190	0.190					
8	0.000	0.000	0.110	0.110	0.110	0.110					
9	0.000	0.000	0.080	0.080	0.080	0.080					
10	0.002	0.002	0.040	0.040	0.040	0.040					
11	0.000	0.000	0.026	0.026	0.026	0.026					
12	0.000	0.000	0.014	0.014	0.014	0.014					
13	0.000	0.000	0.010	0.010	0.010	0.010					
14	-0.006	-0.006	0.005	0.005	0.005	0.005					

Dipole Field Quality

CERN-ACC-2014-103

	Separation dipole D1 field quality version 1 - November 6 2012 - R_{ref} = 50 mm							Recombination dipole D2 field quality version 1.4 - October 1 201					3 - R _{ref} =35 mm						
			Systematic			Uncer	rtainty	Ran	dom				Systematic			Unce	rtainty	Rar	ndom
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field	Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
2	0.000	0.000	0.000	0.000	0.000	0.200	0.200	0.200	0.200	2	0.000	25.000	0.000	0.000	25.000	0.200	2.500	0.200	2.500
3	-1.800	0.900	-14.200	-16.000	-0.900	0.727	0.727	0.727	0.727	3	18.000	-15.000	-14.200	3.800	3.000	0.727	-1.500	0.727	-1.500
4	0.000	0.000	0.000	0.000	0.000	0.126	0.126	0.126	0.126	4	-8.000	10.000	0.000	-8.000	2.000	0.126	0.200	0.126	0.200
5	0.500	-0.500	-1.000	-0.500	0.000	0.365	0.365	0.365	0.365	5	4.000	-5.000	-1.000	3.000	-1.000	0.365	-0.500	0.365	-0.500
6	0.000	0.000	0.000	0.000	0.000	0.060	0.060	0.060	0.060	6	0.000	0.000	0.000	0.000	0.000	0.060	0.060	0.060	0.060
7	1.600	-1.200	-0.700	0.900	0.400	0.165	0.165	0.165	0.165	7	0.800	-1.000	-0.700	0.100	-0.200	0.165	0.165	0.165	0.165
8	0.000	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027	8	0.000	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027
9	-0.680	0.090	0.020	-0.660	-0.590	0.065	0.065	0.065	0.065	9	0.000	0.090	0.020	0.020	0.090	0.065	0.065	0.065	0.065
10	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008	10	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008
11	0.440	0.030	0.000	0.440	0.470	0.019	0.019	0.019	0.019	11	0.000	0.030	0.000	0.000	0.030	0.019	0.019	0.019	0.019
12	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	12	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003
13	0.000	0.000	0.000	0.000	0.000	0.006	0.006	0.006	0.006	13	0.000	0.000	0.000	0.000	0.000	0.006	0.006	0.006	0.006
14	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	14	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
15	-0.040	0.000	0.000	-0.040	-0.040	0.002	0.002	0.002	0.002	15	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002
Skew										Skew									
2	0.000	0.000	0.000	0.000	0.000	0.679	0.679	0.679	0.679	2	0.000	0.000	0.000	0.000	0.000	0.679	0.679	0.679	0.679
3	0.000	0.000	0.000	0.000	0.000	0.282	0.282	0.282	0.282	3	0.000	0.000	0.000	0.000	0.000	0.282	0.282	0.282	0.282
4	0.000	0.000	0.000	0.000	0.000	0.444	0.444	0.444	0.444	4	0.000	0.000	0.000	0.000	0.000	0.444	0.444	0.444	0.444
5	0.000	0.000	0.000	0.000	0.000	0.152	0.152	0.152	0.152	5	0.000	0.000	0.000	0.000	0.000	0.152	0.152	0.152	0.152
6	0.000	0.000	0.000	0.000	0.000	0.176	0.176	0.176	0.176	6	0.000	0.000	0.000	0.000	0.000	0.176	0.176	0.176	0.176
7	0.000	0.000	0.000	0.000	0.000	0.057	0.057	0.057	0.057	7	0.000	0.000	0.000	0.000	0.000	0.057	0.057	0.057	0.057
8	0.000	0.000	0.000	0.000	0.000	0.061	0.061	0.061	0.061	8	0.000	0.000	0.000	0.000	0.000	0.061	0.061	0.061	0.061
9	0.000	0.000	0.000	0.000	0.000	0.020	0.020	0.020	0.020	9	0.000	0.000	0.000	0.000	0.000	0.020	0.020	0.020	0.020
10	0.000	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025	10	0.000	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025
11	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007	11	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007
12	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008	12	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008
13	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	13	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002
14	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	14	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003
15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001

CERN