Development of fast, monolithic silicon pixel sensors in a SiGe Bi-CMOS process.

Speaker:
Lorenzo Paolozzi

Our research

- Milestone 1 (this talk):
\Longrightarrow A monolithic pixel detector with $\mathbf{1 0 0}$ ps time resolution for MIPs and large pixel size to be used for TOF-PET applications.
- Milestone 2:
\Longrightarrow A monolithic pixel detector with sub-100 ps time resolution for MIPs and small pixel size to be used for high-energy and applied physics research.

Technology choice

Time resolution of silicon pixel detectors

The three main parameters that determine the time resolution of semiconductor detectors:
\longrightarrow Read out geometry (constraint)
\longrightarrow Electronics noise (optimization)
\longrightarrow Charge collection noise (limit)

$$
I_{\text {ind }}=\sum_{i} q_{i} \vec{v}_{d r i f t, i} \cdot \vec{E}_{w, i}
$$

Electronic noise

Detector time resolution depends mostly on the amplifier performance!

$$
\sigma_{t}=\frac{\sigma_{V}}{\frac{d V}{d t}} \cong \frac{\text { Rise Time }}{Q / E N C}
$$

Need a fast, low-noise, low power consumption electronics.

The fast, low noise amplifier

$$
\begin{gathered}
E N C^{2} \propto\left(2 q_{e} I_{C}+\frac{4 k T}{R_{P}}+i_{n a}^{2}\right) \cdot \tau+\sqrt{\left(4 k T R_{S}+e_{n a}^{2}\right) \cdot \frac{C_{i n}^{2}}{\tau}}+4 A_{f} C_{i n}^{2} \\
\text { Fast BJT integrator } \\
E N C_{\text {series noise }(\tau<10 n s)} \\
\qquad \sqrt{2 k T\langle S N I\rangle\left[\left(C_{i n}\right)^{2} \frac{h_{i e}}{\beta}+R_{b b} C_{i n}^{2}\right]}
\end{gathered}
$$

Maximize the current gain (at high frequencies!) while keeping a low base resistance

SiGe technology for low noise, fast amplifiers

A possible approach: changing the charge transport mechanisms in the base from diffusion to drift.

Our choice:

SiGe HBT from IHP microelectronics
$\beta=900$
$f_{t}=250 \mathrm{GHz}$

Proof of principle

November 2015:

Hybrid sensor with SiGe discrete component amplifier

- Large pads.
- $100 \mu \mathrm{~m}$ thick substrate.

Beam test with MIPs:

- Time resolution: 106 $\mathbf{1}$ ps.
- Power consumption: $1400 \mathrm{~mW} / \mathrm{cm}^{2}$

For more information:
M. Benoit et al 2016 JINST 11 P03011
doi: https://doi.org/10.1088/1748-0221/11/03/P03011

ASIC development

SiGe monolithic ASIC for TOF-PET

Technology	IHP SG13S
ASIC length	24 mm
ASIC width	$7,9,11 \mathrm{~mm}$
Pixel Size	$500 \times 500 \mathrm{\mu m}^{2}$
Pixel Capacitance (comprised routing)	$\mathbf{7 5 0} \mathbf{f F}$
Preamplifier power consumption	$<\mathbf{8 0} \mathbf{~ m W} / \mathbf{c m}^{\mathbf{2}}$
Preamplifier E.N.C.	$600 \mathrm{e}^{-} \mathrm{RMS}$
Preamplifier Rise time (10\% - 90\%)	800 ps
Time resolution for MIPs	$\mathbf{1 0 0} \boldsymbol{p s} \boldsymbol{R M S}$
TDC time binning	20 ps
TDC power consumption	$\sim 0.1 \mathrm{~mW} / \mathrm{ch}$

Sensor design

Simplified architecture for large pixel size.

FRONT END AND FAST-OR

- SG13S technology from IHP microelectronics.
- N-on-P pixels.
- Substrate to ground.
- Positive high voltage to pixels.
- Signal routed to the frontend on the chip periphery.

Sensor design

TDC and synchronization

Out target: synchronize $\mathbf{2 0 0 0}$ chips at $\mathbf{1 0} \mathbf{p s}$ precision for a TOF-PET scanner.
Synchronization technique (patent pending):

- All chips have free-running TDCs.
- A low-jitter clock is distributed to the chips.
- The first edge and the period of the clock are measured.
- They are used to provide a time reference and a frequency calibration for each TDC.
- Robust solution.
- Synchronization at 10 ps precision with no PLL.
- Very low frequency jitter of the TDCs.

TDC and synchronization

UNIVERSITÉ DE GENÈVE

TDC design:

First test

Concept prototype

December 2017

Monolithic chip: sensor + front-end.

- High wafer resistivity ($1 \mathrm{k} \Omega \mathrm{cm}$).
- Breakdown voltage: above 160 V .
- Pixel size: $900 \times 900 \mu m^{2}$ and $900 \times 450 \mu m^{2}$.
- No thinning, no backplane metallization.

Beam Test with MIPs:

- Time resolution: 202.3 $\pm 0.8 \mathrm{ps}$.
- Efficiency 99.8\%.
- Power consumption: $80 \mathrm{~mW} / \mathrm{cm}^{2}$.
L. Paolozzi et al 2018 JINST 13 P04015
doi: https://doi.org/10.1088/1748-0221/13/04/P04015

Demonstrator chip

Demonstrator layout

UNIVERSITÉ DE GENÈVE

- 3×10 matrix, $500 \times 500 \mu m^{2}$ pixels.
- Preamplifier, discriminator, 50 ps binning TDC, logic, serializer integrated in chip.
- Thinned to $100 \mu \mathrm{~m}$. Depletion depth $80 \mu \mathrm{~m}$.
- Full backside processing.

Demonstrator layout

Demonstrator layout

UNIVERSITÉ DE GENĖVE

Beam test with MIPs at CERN SPS

UNIVERSITÉ DE GENÈVE

Efficiency

Chip 1

Global efficiency above 99.98\%

Calibrations

Secondary peaks observed on the TOT

Independent time walk correction for each pixel.

Time resolution

Time resolution

UNIVERSITÉ DE GENÈVE

Future steps Milestone 2

Target: sub-100ps resolution

- Electronics inside the guard ring.
- ~30 $\mu \mathrm{m}$ depletion region.
- ~100 $\times 100 \mu m^{2}$ pixel size.
- Standard wafer resistivity ($50 \Omega \cdot \mathrm{~cm}$)

Target: sub-100ps resolution

Test prototype - IHP SG13G2 technology:

- Insulated HBT designed with IHP microelectronics and characterized in foundry.
- $50 \mu \mathrm{~m}$ thick, no backside processing.
- High voltage: breakdown at -200 V.
- Electronics fully functional.
- Data taking in progress.

Conclusions

- A technique to exploit the timing performance of SiGe HBTs with pixel sensors has been developed.
- Thanks to this technique, we reached our first milestone with a time resolution of $\mathbf{1 1 0} \mathbf{~ p s}$ with the first SiGe BICMOS monolithic silicon pixel sensor.
- A synchronization method for picosecond measurement, scalable to large area systems was filed for patent.
- Work is ongoing towards the production of smaller area pixels for sub-100ps time resolutions.

Backup

Efficiency curve

TT-PET Basic detection element

The TT-PET scanner

A Geant4 simulation has been developed to predict the scanner efficiency to 511 keV photons, the expected detection rate per chip and the scanner space resolution.

For 1.5 cm cell thickness

- Scanner sensitivity (coincidences per disintegration):5 \%

Typical small animal PET sensitivity: from 1% to 10%

