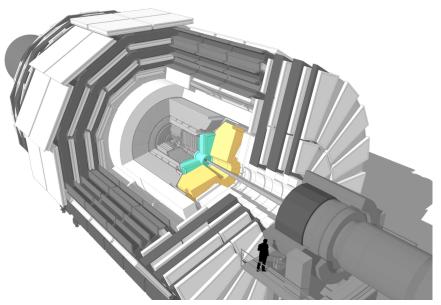


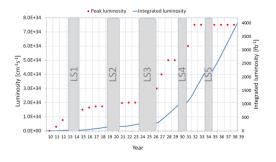
Beam-tests of prototype modules for the CMS High Granularity Calorimeter at CERN PIXEL2018: International Workshop on Semiconductor Pixel Detectors for Particles and Imaging 2018

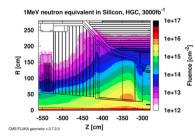
Arnaud Steen On behalf of the CMS collaboration

10-14 December 2018


Outline

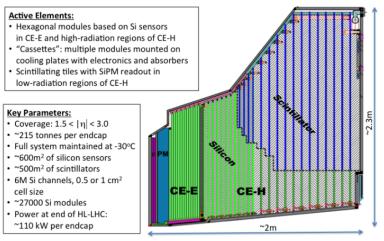
Motivation for upgrade


2 HGCAL prototype


Preliminary results

CMS will replace its endcap calorimeters in 2024-25

High luminosity LHC


High lumi LHC

- Luminosity : $5 \times 10^{34} \ cm^{-2} s^{-1}$
- Integrated luminosity : 3000 fb⁻¹
- Fluences : up to $10^{16} neq/cm^2$ in ECAL endcap
- Average pileup : 140 (maximum of 200)

Need to replace endcap calorimeters

- Radiation tolerant
- Good timing resolution (pileup mitigation)
- Tracking capability (shower reconstruction, PFA)

CMS High Granular Calorimeter (HGCAL)

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X₀ & ~1.3 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5 λ

• More details about HGCAL project in Chia-Hung Chien's poster : The CMS High Granularity Calorimeter for HL-LHC

Arnaud Steen, NTU

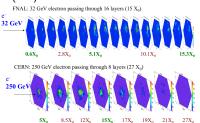
Overview and goals of the beam tests

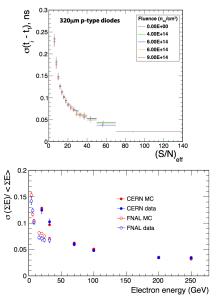
Main goals

- Validation of basic design of the HGCAL
- Comparisons with GEANT4 simulation
- Test calorimetric performance of silicon based calorimeter

2016 beam tests

- Timing study with irradiated silicon diodes at CERN
- Electromagnetic calorimeter prototype using 6" modules and SKIROC2 ASIC (designed for CALICE SiWECal) at FNAL and CERN

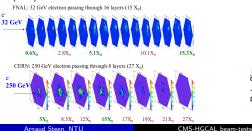

2017/2018 beam tests

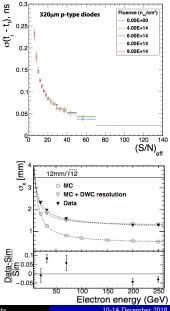

- New 6" modules using SKIROC2_CMS ASIC (with time over threshold and time of arrival measurements)
- Various configurations tested at CERN with up to 20 modules in 2017
- Beam test at DESY (March/April 2018) with few modules
- Larger scale beam tests :
 - CE-E prototype with 28 modules at CERN (June 2018)
 - Prototype with 94 silicon modules + the CALICE Analog Hadronic CALorimeter prototype (sampling calorimeter using scintillator tiles as active medium) at CERN (October 2018)

Results from 2016 beam tests

- Precision timing study with irradiated silicon diodes
- Electromagnetic calorimeter prototype using 6" modules and SKIROC2 chip (designed for CALICE SIWECal)
 - ► FNAL beam test : 16 modules with total thickness $\approx 15X_0$
 - ▶ CERN beam test : 8 modules, with total thickness $\approx 27X_0$
- Beam tests results in this paper :

N. Akchurin et al. First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter (link)





Results from 2016 beam tests

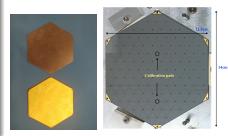
- Precision timing study with irradiated silicon diodes
- Electromagnetic calorimeter prototype using 6" modules and SKIROC2 chip (designed for CALICE SIWECal)
 - FNAL beam test : 16 modules with total thickness $\approx 15X_0$
 - ▶ CERN beam test : 8 modules, with total thickness $\approx 27X_0$
- Beam tests results in this paper :

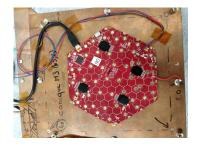
N. Akchurin et al. First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter (link)

1 Motivation for upgrade

BIGCAL prototype

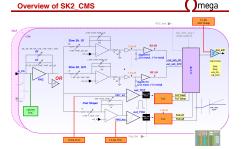
3 Preliminary results

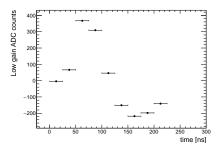

Module assembly


Glued stack

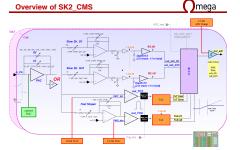
- Baseplate (CuW for CE-E, Cu for CE-H), thickness : 1.2 mm
- Kapton foil with gold layer
- 6" silicon sensor from HPK
- PCB holding 4 SKIROC2_CMS readout chips (32 channels per chip are connected to a silicon pads)
- Silicon pads wire bonded through holes in the PCB

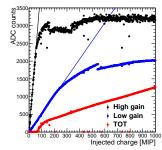
Silicon sensors


- 6" hexagonal sensor
- Physical thickness : 320 μm
- Depleted thickness : 300 μm (4 modules with 200 μm)
- 134 individual silicon cells with an area of $\approx 1.1 cm^2$ for the full cells
- 2 inner calibration pads with 1/9th of the area of the full cell (for MIP sensitivity after irradiation)



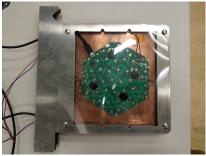
Readout CHIP : SKIROC2_CMS

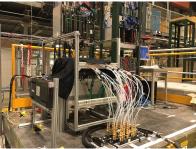

- Derived from CALICE SKIROC2 chip
- 64 channels (though 32 are connected to a silicon pad)
- 2 slow shapers (shaping time between 10 and 70 ns) per channel with
 - a 13-deep 40 MHz analog memory used as waveform sampler
 - 12-bit ADC
- Fast shaper (shaping time between 2 and 5 ns) and discriminators for
 - Time over threshold to measure large signal (preamplifier saturation region)
 - Time of arrival (50 ps timing resolution foreseen)
- More details in this paper : J. Borg et al. SKIROC2_CMS an ASIC for testing CMS HGCAL



Readout CHIP : SKIROC2_CMS

- Derived from CALICE SKIROC2 chip
- 64 channels (though 32 are connected to a silicon pad)
- 2 slow shapers (shaping time between 10 and 70 ns) per channel with
 - a 13-deep 40 MHz analog memory used as waveform sampler
 - 12-bit ADC
- Fast shaper (shaping time between 2 and 5 ns) and discriminators for
 - Time over threshold to measure large signal (preamplifier saturation region)
 - Time of arrival (50 ps timing resolution foreseen)
- More details in this paper : J. Borg et al. SKIROC2_CMS an ASIC for testing CMS HGCAL


CE-E prototype


Mini cassette

- 4 mm thick lead absorber plate
- 6 mm thick copper cooling plate holding 2 modules on its 2 faces
- Copper cooling pipe inside the copper plate
- Aluminium frame and mylar foil

ECAL prototype

- 14 mini cassetes (i.e. 28 silicon modules)
- Total depth : \approx 24 X_0 , $1\lambda_I$
- Water cooling to keep constant temperature : 28° C

CE-H prototype

CE-H layer

- 6 mm thick copper cooling plate holding 7 modules (only on front face)
- Copper cooling pipe glued to the backside of the copper plate

CE-H (silicon part) prototype

- 12 layers (9 with 7 modules + 3 with 1 module), 12k electronic channels in total
- Separated by 4 cm thick steel absorber plates
- Total depth : $\approx 3.5 \lambda_I$
- Water cooling to keep constant temperature : $28^{\circ}C$

CALICE AHCAL prototype

- 38 layers using scintillator tiles (tile size : $3 \times 3 cm^2$)
- pprox 22k channels
- Separated by 1.75 cm thick steel absorber plates
- Total depth : $\approx 4\lambda_I$

DAQ systems

Extra detectors in the beam line :

- $\bullet\,$ 2 scintillators in coincidence for the trigger $+\,$ 1 veto scintillator between HGCAL and AHCAL prototypes to reject pion in electron run
- 4 delay wire chambers readout with TDC
- 2 MCP detectors for timing reference readout with 5 GHz digitizer

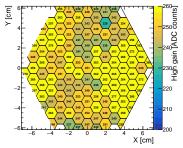
Custom DAQ boards

- SYNCH board (1 synch board in total)
 - board creates 40 MHz clock
 - receives and distributes triggers to RDOUT boards, AHCAL, TDC and digitizer
- RDOUT boards connected to up to 8 modules
 - distribute low and bias voltage to the modules
 - send commands to the MAX10 FPGA on the modules (trigger, slow control)
 - read out the data using IPbus protocol

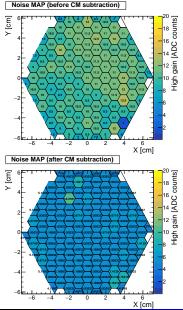
DAQ software

- eudaq framework https://eudaq.github.io/
- Collects data from each detector types
- Provides DQM framework

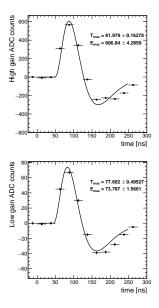
Beam test summary

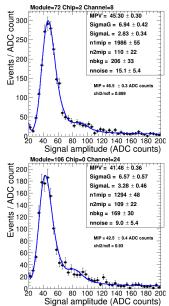

1 Motivation for upgrade

2 HGCAL prototype

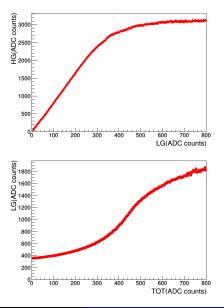

O Preliminary results

- Pedestal estimation and subtraction for each channel and each memory slot (13-deep 40 MHz analog memory)
- Common mode noise estimation for each module and each time sample
- Pulse shape fit to extract high and low gain amplitudes, after hit pre-selection
- Gain choice between high gain, low gain and ToT and hit energy calibration
 - High gain calibrated using muon runs
 - ▶ 1 MIP \approx 40-50 ADC counts (high gain), S/N \approx 6-7 for MIP
 - Low gain calibrated using high gain
 - ToT calibrated using low gain

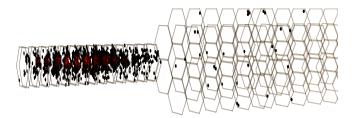

Pedestal MAP


- Pedestal estimation and subtraction for each channel and each memory slot (13-deep 40 MHz analog memory)
- Common mode noise estimation for each module and each time sample
- Pulse shape fit to extract high and low gain amplitudes, after hit pre-selection
- Gain choice between high gain, low gain and ToT and hit energy calibration
 - High gain calibrated using muon runs
 - ▶ 1 MIP \approx 40-50 ADC counts (high gain), S/N≈6-7 for MIP
 - Low gain calibrated using high gain
 - ToT calibrated using low gain

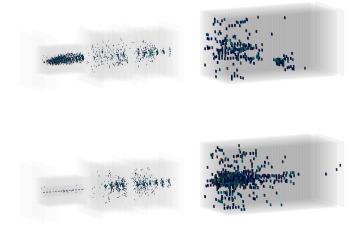
- Pedestal estimation and subtraction for each channel and each memory slot (13-deep 40 MHz analog memory)
- Common mode noise estimation for each module and each time sample
- Pulse shape fit to extract high and low gain amplitudes, after hit pre-selection
- Gain choice between high gain, low gain and ToT and hit energy calibration
 - High gain calibrated using muon runs
 - ▶ 1 MIP \approx 40-50 ADC counts (high gain), S/N \approx 6-7 for MIP
 - Low gain calibrated using high gain
 - ToT calibrated using low gain



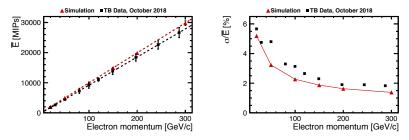
- Pedestal estimation and subtraction for each channel and each memory slot (13-deep 40 MHz analog memory)
- Common mode noise estimation for each module and each time sample
- Pulse shape fit to extract high and low gain amplitudes, after hit pre-selection
- Gain choice between high gain, low gain and ToT and hit energy calibration
 - High gain calibrated using muon runs
 - ▶ 1 MIP \approx 40-50 ADC counts (high gain), S/N \approx 6-7 for MIP
 - Low gain calibrated using high gain
 - ToT calibrated using low gain


HGCAL prototype

- Pedestal estimation and subtraction for each channel and each memory slot (13-deep 40 MHz analog memory)
- Common mode noise estimation for each module and each time sample
- Pulse shape fit to extract high and low gain amplitudes, after hit pre-selection
- Gain choice between high gain, low gain and ToT and hit energy calibration
 - High gain calibrated using muon runs
 - ▶ 1 MIP \approx 40-50 ADC counts (high gain), S/N≈6-7 for MIP
 - Low gain calibrated using high gain
 - ToT calibrated using low gain



Event displays : 300 GeV EM showers



Event displays : 300 GeV hadronic showers

Electromagnetic shower results

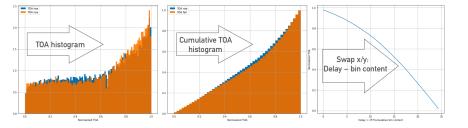
- Energy sum from all layers (only CE-E prototype i.e. 28 modules)
- Beam energy corrected to take into account synchrotron radiation
- Simulation being tuned with momentum spread from SPS

- Next steps :
 - Improve hit calibration
 - Apply weights for each layers

Conclusion

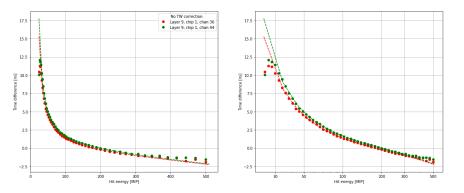
- $\bullet\,$ New HGCAL prototype has been built with 94 silicon modules ($\approx\,$ 12k channels) between 2017 and 2018
- Combined data taking with AHCAL prototype, delay wire chambers and MCP has been a success
- Good preliminary results
 - Low noise
 - Good S/N for MIP
 - Reasonable data-simulation agreement
 - Energy and time resolution close to expectations
- Next plan for the data analysis :
 - Improve the calibration
 - Compare data and simulation
 - Apply clustering technique
 - Combine HGCAL data with AHCAL for hadronic shower study
 - Time precision study using MCP detectors

Back-Up


Calibration of ToA

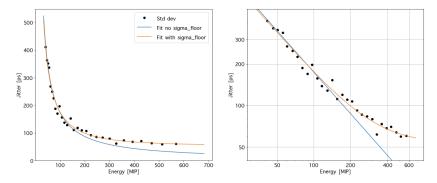
ToA signal

- Using electron runs from June data
- ToA threshold : ≈ 10 MIPs
- ToA measure time between ToA trigger and next falling/rising edge (but skiping first edge) of the 40 MHz clock


ToA calibration

- Beam is asynchronous → Time distribution expected to be uniform
- ToA range = 25 ns (with 12.5 ns offset)

Time walk correction


- Time walk can be large for low signal amplitude
- Time walk correction :
 - Select a reference channel (and small amplitude window to minimize TW effect)
 - Look at time diffence with neighbouring cells to extract the time-walk

Time resolution

• Time differences between 2 silicon pads

- ▶ Assume same time resolution in each cell $\rightarrow \sigma_t = \sigma_{\Delta_t}/\sqrt{2}$
- ▶ Time resolution constant term \approx 50 ps

• Next step : use MCP data for the time reference