MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade.

Roberto Cardella, Lluis Simon Argemi, Ivan Berdalovic, Florian Dachs, Valerio Dao, Leyre Flores Sanz De Acedo, Francesco Piro, Tomasz Hemperek, Bojan Hiti, Thanushan Kugathasan, Cesar Augusto Marin Tobon, Konstantinos Moustakas, Ruth Magdalena Munker, Heinz Pernegger, Petra Riedler, Enrico Junior Schioppa, Abhishek Sharma, Walter Snoeys, Carlos Solans Sanchez, Tianyang Wang, Norbert Wermes, Piotr Rymaszewski, Ignacio Asensi Tortajada
Outline

1. CMOS development for ATLAS ITk
 • TowerJazz 180nm technology

2. MALTA chip
 • Datapath: From the pixel to the output
 • Measurements results
 • Module design

3. Parallel R&D on MALTA

4. Conclusions
CMOS considered for ATLAS ITk

Outermost layer of ITk Pixel Barrel

- 2016 quad modules
- 3m² (~45% of outer barrel layers)

For 4000 fb-1 integrated luminosity

- TID = 80Mrad
- NIEL 1.5×10^{15} neq/cm²

Monolithic CMOS sensors are considered as option for the outermost layer

- Saves bump bonding for ~45% of outer barrel system
- Substantial cost reduction and reduced module assembly time
- Requires “Drop-In” module compatibility to hybrid module
Sensors in the TowerJazz 180 nm technology

Standard Process

Small collection electrode design with high resistivity (> 1 kΩ cm) p-type epitaxial layer (25 µm → MIP ~1500 e⁻)

Deep p-well shielding n-well to allow full CMOS

Reverse bias (~6 V): reduce input capacitance and increase depletion volume

Modified Process

Adding a planar n-type layer to improve depletion under the deep p-well near the pixel edges

A fully depleted epitaxial layer results in faster charge collection and better radiation tolerance

No circuit or layout changes required

Sensors in the TowerJazz 180 nm technology

Standard Process

Small collection electrode design with high resistivity (> 1 kΩ cm) p-type epitaxial layer (25 µm → MIP ~1500 e⁻)

Deep p-well shielding n-well to allow **full CMOS**

Reverse bias (~6 V): reduce input capacitance and increase depletion volume

Modified Process

Adding a **planar n-type layer** to improve depletion under the deep p-well near the pixel edges

A fully depleted epitaxial layer results in faster charge collection and better radiation tolerance

ALPIDE (standard process) will be installed in the new tracker system of the ALICE detector.

http://stacks.iop.org/1748-0221/11/i=02/a=C02042

Large vs Small collection electrode

Large collection electrode (HV-CMOS)
- Large capacitance
- Higher power
- Electronics in the input well, signal coupling
- Practically uniform field
- Very high radiation tolerance

Small collection electrode (TJ)
- Small capacitance
- Lower power
- Less prone to coupling
- Process modification for full depletion and radiation tolerance increase
Large vs Small collection electrode

Large collection electrode (HV-CMOS)

Small collection electrode (TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Analog</td>
<td>238</td>
<td>238</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Matrix Digital</td>
<td>12</td>
<td>240</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Total Expected</td>
<td>514</td>
<td>703</td>
<td>1305</td>
<td></td>
</tr>
</tbody>
</table>
Measurement results show improved non-ionizing radiation tolerance for sensors manufactured using the modified process.

Analog front-end optimized for timing, based on ALPIDE.

Talk on TJ-Monopix

Thu 13/12 12:00 *I. D. Caicedo Sierra*

R&D status of the Monopix chips: Depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade.
The 512x512 pixel - 8 sectors
The front-end is a development from the ALPIDE one.
Design based on a **low-power analogue front-end** and a novel **asynchronous architecture** to read out the pixel matrix.

DACs for analogue biases
digital periphery

LVDS driver
The MALTA pixel

- 2-3 um collection electrode → small input capacitance
- 3.4 – 4 um separation between electrode and electronics → low cross talk
- 1 uW/pixel analog power (75 mW/cm²)
- 10 mW/cm² digital power @ layer4

Sensor and analogue front-end (shaper-amplifier and discriminator) shielded from digital part to minimise crosstalk

Time walk information preserved
Digital readout architecture

- Front-end output injected into double-column digital readout logic
- Hits are stored using in-pixel flip-flops and transmitted asynchronously over high-speed buses to the end-of-column logic (digital periphery)
- **No clock distribution over the active matrix** – reduces power consumption!
- Double-column divided into groups of 2x8 pixels ("red" and "blue")
- Buses shared by all groups of the same colour in the double-column, total of 64 groups
- Each hit is hence represented by a 40 bit word, **asynchronously transmitted via parallel LVDS drivers**
Digital readout architecture

- Front-end output injected into double-column digital readout logic
- Hits are stored using in-pixel flip-flops and transmitted asynchronously over high-speed buses to the end-of-column logic (digital periphery)
- **No clock distribution over the active matrix** – reduces power consumption!

<table>
<thead>
<tr>
<th>Power/Chip [mW]</th>
<th>TJ Asynchronous</th>
<th>TJ Synchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Analog</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>Matrix Digital</td>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td>Total Expected</td>
<td>514</td>
<td>703</td>
</tr>
</tbody>
</table>

Factor 20 for matrix digital power
More than 25% of total power
Asynchronous readout architecture

Hit signals from the pixels are buffered and arrive at the end-of-column with a maximum propagation delay of \(\sim 7.5\) ns

(-measured by pulsing pixels on top, middle and bottom of the column)

Analogue output of one pulsed pixel

Reference signal

25 ns = 17.5 ns (pulse) + 7.5 ns (signal)
Analogue front-end timing measurements

<table>
<thead>
<tr>
<th>Required Time Res. [ns]</th>
<th>Outer Layer</th>
<th>Inner Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Rate [MHz/mm²]</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Fluence [nₑq/cm²]</td>
<td>10¹⁵</td>
<td>10¹⁶</td>
</tr>
<tr>
<td>Ion. Dose [Mrad]</td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>

Time walk measurement performed with a 90Sr source using special pixels to monitor the analogue output.

With a threshold of 210 e⁻ the **in-time threshold** is 300 e⁻ (20% of MIP charge).

Out-of-time hits due to charge sharing (measurement done on a single pixel)

Out-of-time hits 5.3% (second hits in the cluster)

In-time threshold 130mV = 300 e⁻
Time walk can also be obtained by measuring the delay of digital output signals with respect to a fast trigger (scintillator).

In-time efficiency for leading signals in clusters reaches 98% with a 300 e⁻ threshold (no correction for the 7.5 ns propagation delay down the column).
Thres. dispersion and noise before and after TID

- Front-end still operational after 70 Mrad due to ELT in sensitive branch
- Increase in threshold spread and noise under investigation

unirrad:
factor ~3 higher than simulation

 matches simulation

RTS noise tail?
Efficiency in testbeam before and after irradiation

Decreasing threshold from ~600 e$^-$ to ~250 e$^-$ (unirrad.)

Unirradiated: lowering the threshold gives full efficiency

Cannot go lower with threshold because of RTS noise and masking issue

Solution for both under study.
Efficiency in testbeam before and after irradiation

Unirradiated: lowering the threshold gives full efficiency

Decreasing threshold from ~600 e⁻ to ~250 e⁻ (unirrad.)/350 e⁻ (irrad.)

Neutron irradiated 5×10^{14} neq/cm²
inefficiency in pixel corners due to low lateral electric field

Could not reach lower threshold
(RTS + MASKING ISSUE)
Efficiency vs. deep p-well coverage
Efficiency vs. deep p-well coverage

- Deep p-well only needed under n-wells of PMOS transistors
- In-pixel efficiency can be correlated to deep p-well coverage around the collection electrode
- Removed deep p-well results in higher overall efficiency due to higher lateral electric field
Pixel design improvements

Additional “extra-deep p-well” layer
• Already known by TowerJazz: no process R&D needed

Gap in the n-layer
• requires only a change of the existing mask for the n-layer

Talk on efficiency simulations
Mon 10/12 11:10 Ruth Magdalena Munker
Simulations of CMOS sensors with a small collection electrode improved for a faster charge-collection and increased radiation tolerance
Mini MALTA pixel matrix

- Pixel size: 36.4 μm x 36.4 μm
- 64x16 pixel matrix includes 8 sectors with splits on analogue front-end design, reset mechanism and process

Mini MALTA with synchronization and fixes for improved chargecollection
LAPA: pseudo-LVDS for the ATLAS Pixel Apparatus

- 280 X 240µm\(^2\) (2 pad pixel pitch)
- Tunable DC current (7x 0.8mA)
- Modular capacitive coupled pre-emphasis: 16 blocks driving 25fF each.
- Vcm feedback control at 0.8V.
- External 100 Ω differential termination
- 40 drivers integrated in MALTA (up to 2Gb/s)

Dedicated testchip

5Gb/s
LAPA eye diagram

5Gb/s

1.28Gb/s (ITk specification)

Jitter$_{p-p} = 71$ps

Jitter$_{p-p} = 38$ps
LAPA @1.28 Gbit/s on FLEX ITk prototype

Flex for data transmission out of the ITk system (length~5m)
The ATLAS ITk sensors will be organized in quad modules. In the case of the hybrid pixel, one sensor of around 4x4 cm2 will be bonded to four 2x2 cm2 front-end chips.

MALTA is the first large scale monolithic chip that allow build a compatible Quad-Module, assembling four detectors in a single FLEX.
MALTA can transmit power and data asynchronously to a neighboring chip (via CMOS pad), merging the data of multiple pixel matrix in just one parallel output.

Connection between neighboring chips using flip chip:
- Better for assembling
- Allow additional electronics in the flipchip
Buried channels cooling

(Ø 35 µm, length ≈ 1 cm)

Sezione longitudinale

DOI: 10.1109/ITHERM.2012.6231493

J. Bronuzzi, A. Mapelli, R. Callegari, P. Riedler
Malta Telescope

6 MALTA chip-based planes
2 Scintillators
4um resolution
Conclusions

The MALTA CMOS pixel sensor was developed in view of the ATLAS High-Luminosity upgrade.

The large pixel matrix implements a fast, low-power analogue front-end and a novel asynchronous readout architecture.

The chip has been extensively characterised in lab measurements and testbeam, and shows promising results in terms of front-end performance and readout capability, but needs further improvement:

The small collection electrode sensor suffers from degraded efficiency in the pixel corners after irradiation to 10^{15}neq/cm^2, and this is being addressed by means of improvements in the process (see M. Munker’s presentation), and also in the front end design to obtain a lower threshold.

An LVDS driver has been designed and tested to transmit the data to the ITk readout system, up to 5Gb/s.

The MALTA chip allows to build the first prototype of a monolithic module, compatible with the hybrid equivalent for the ITk system.

Several R&D on monolithic pixel sensors are in progress using the MALTA chip, such as buried channels cooling and chip to chip data communication.
Thank you for the attention

Question time!
Backup slides
Time walk after irradiation

Little change in front-end signal and timing after irradiation (somewhat more charge sharing)
Front-end optimization (simulation)

I. Berdalovic et al 2018 JINST 13 C01023

![Graph with plots and circuit diagram]

- Sensing node
- Amplifier output
- Pulse duration clipping (MALTA)
- Time walk
- Discriminator output
- Dead time

P_{analog} = 0.9 \mu W

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge threshold Q_{th}</td>
<td>300 e</td>
</tr>
<tr>
<td>Equivalent Noise Charge</td>
<td>7.1 e</td>
</tr>
<tr>
<td>Channel-to-channel RMS</td>
<td>10.2 e</td>
</tr>
</tbody>
</table>
Efficiency after irradiation to $10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

Decreasing threshold from ~450 e$^-$ to ~350 e$^-$

Artifact: pixel center efficiency decreases at low thresholds due to noise issues
Silicon Pixel Detector

Hybrid

- Used in current LHC detectors
- Optimized silicon sensor for radiation hardness
- Dedicated front-end electronics bonded to the sensor
- Thick modules
- Complex and costly assembly due to fine-pitch bump bonding

Monolithic

- Promising technology for future detectors
- Single chip integrate electronic and sensor
- Radiation hardness limitation
- Lower material budget
- Large number of available vendors

- Epitaxial Layer P-
- Substrate P++
The MALTA periphery implements a fully asynchronous arbitration logic to merge the signals coming from groups with different colour.

In the case of simultaneous signals on two buses the logic gives priority to one, while the other is delayed.

Merging is repeated for all the double-columns in a binary tree-like structure, adding a column address bit in each step, until all outputs are merged into one parallel 40-bit bus.

x256 double-columns

x10 levels of merging for full matrix
Parallel data bus requires **delay uniformity**: all address bits need to arrive at the reference signal at the same time as the reference signal.

(pulsing a pixel 200 times and oversampling the output signals to check the timing alignment)
- Carrier board for two MALTA chips with FMC interface
- Asynchronous oversampling on Xilinx VC707 board
- Slow read-out through IPbus ethernet to Linux PC running SLC6
- Fast read-out through GBT optical link with FELIX + ITK SW

R. Cardella, V. Dao, C. Marin Tobon, E.J. Schioppa, B. Schlager, L. Simon Argemi, C. Solans Sanchez
LAPA H-BRIDGE

7 HBRIDGE blocks of 0.8mA - max: total 6mA
16 BLOCKS driving 25fF coupled with the output pad
2.5GHz LVDS IN – LVDS OUT. 100Ω termination. 1pF load.

Simulated jitter=45ps
Preliminary power consumption

Expected static power consumption

<table>
<thead>
<tr>
<th>Static</th>
<th>Current [mA]</th>
<th>Power [mW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Hbridge</td>
<td>4</td>
<td>7.2</td>
</tr>
<tr>
<td>7 Hbridge</td>
<td>5.2</td>
<td>10</td>
</tr>
</tbody>
</table>

Measurements on test chip

<table>
<thead>
<tr>
<th>Static+Dynamic 1.28Gb/s</th>
<th>Current [mA]</th>
<th>Power [mW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Hbridge</td>
<td>6</td>
<td>10.8</td>
</tr>
<tr>
<td>7 Hbridge</td>
<td>8</td>
<td>14.4</td>
</tr>
</tbody>
</table>