

Study of efficiency and noise of fine pitch planar pixel detector for ATLAS ITk upgrade

PIXELInternational Workshop on Semiconductor Pixel2018Detectors for Particles and Imaging (PIXEL2018)

10-14 December 2018 Academia Sinica, Taipei Europe/Parls timezone

> Koji Nakamura (KEK) On behalf of ATLAS Japan Pixel group and Hamamatsu Photonics K.K.

13th Dec 2019

Introduction

<u>High Luminosity LHC (HL-LHC)</u>

- Start around 2026- with new crab cavity in the interaction region.
- Target : \sqrt{s} =14TeV L=5x10³⁴ $\int Ldt$ =3000fb⁻¹
- Physics program focus the precise measurement of the Higgs coupling (e.g. $Y_{\tau},\,Y_{b}$ and $\lambda_{\rm HHH})$ and BSM searches.
- Tracking detector is key element
 - To keep B/ τ -tagging performance up to μ =200 pileup in an event.
 - Mitigation for the pileup effect for MET calculation can be done by tracking from primary vertex.

• Development of middle-outer pixel layer

- Planar type Pixel detector (For ATLAS phase II upgrade : ITK pixel)
- n+-in-p sensor with Pixel size : 50um x 50um (or 25um x 100um)
- Radiation tolerance : up to $3x10^{15} n_{eq}/cm^2$

Sensor performance of 50um x 50um planar pixel detector is presented.

Bias structure and efficiency loss

- For n+-in-p sensor, negative bias to backside and ground at all pixels.
- Need to set all pixels to ground potential for testing I-V property before Bump bonding. (Bias structure)
 - Bias rail & bias resistor (BR)
 - Punch through (PT)
- Two important feature
 - Higher noise observed for pixels with BR structure.
 - Typical Efficiency drop at under bias structure observed. к

K. Nakamura et al 2015 JINST 10 C06008

Available Read out ASICs

- For sensor performance evaluation, used FE-I4, FE65p2 and RD53A.
- FE65p2 is small prototype ASIC for RD53A and have lower noise than FE-I4.

	FE-I4 (2012)	FE65p2 (2016)	RD53A (Nov. 2017)
ASIC demention	17mm	3mm 4mm	20mm 11.8mm
CMOS process	130nm	65nm	65nm
Pixel size	50um x 250um (25um x 500um)	50um x 50um (25um x 100um)	50um x 50um (25um x 100um)
Pixel matrix	336 x 80	64 x 64	400 x 192
Max data output rate	160Mbps	160Mbps	1.28Gbps x 4
stable threshold (typical threshold)	~1500 e⁻ (2000-3000 e⁻)	500 e ⁻ (700 e ⁻)	500 e ⁻ (1000-1500e ⁻)

Pixe 2018

4

Available Read out ASICs

- For sensor performance evaluation, used FE-I4, FE65p2 and RD53A.
- FE65p2 is small prototype ASIC for RD53A and have lower noise than FE-I4.

	FE-I4 (2012)	FE65p2 (2016)	RD53A (Nov. 2017)
ASIC demention	17mm	3mm 4mm	20mm 11.8mm
CMOS process	130nm	65nm	65nm
Pixel size	50um x 250um (25um x 500um)	50um x 50um (25um x 100um)	50um x 50um (25um x 100um)
Pixel matrix	336 x 80	64 x 64	400 x 192
Max data output rate	160Mbps	160Mbps	1.28Gbps x 4
stable threshold (typical threshold)	~1500 e ⁻ (2000-3000 e ⁻)	500 e⁻ (700 e⁻)	500 e ⁻ (1000-1500e ⁻)
13th Dec 2019	Pixe 2018 5		

6th sensor mask by HPK/KEK

13th Dec 2019

6th sensor mask by HPK/KEK

13th Dec 2019

Irradiation Facility in Japan

- CYRIC@Tohoku Univ. is a irradiation facility with 70MeV proton beam (~1μA).
 - This allows 5-6 pixel module with back Al plain at the same time(3% E loss/pixel).
 - Operated at -15° C temprature with dry N₂ gas.
- Programmable X-Y stage and "push-pull" mechanism are implemented to the machine.
 - choose one or a few target samples in max 15 pre-installed samples.
- Scanning over full pixel range during irradiation.
- Actual Fluence difference relative to the target fluence is within ~10%.

Testbeam at CERN SPS H6A/B

- To evaluate efficiency in pixel, performed testbeam before/after irradiation.
 - CERN H6 beam line
 - 120GeV pion beam
 - 7 testbeams in 2016-2018 at CERN (and Fermilab)
 - Typical CERN TB
 - 6 layer of telescope
 - 3-5um pointing resolution
 - DUTs are in the cooling box

Noise increase by Biasing structure

- Higher noise in the pixel with BR observed
 - Depends on the FE circuit

First 65nm CMOS analog FE

testing chip (FE65p2)

~36e

- FE65p2:90e RD53A:215e effect
- Under investigation with chip designer.

0.12

0.1

0.08

0.06

0.04

0.02

~80e

No BR

100

Depends on resistivity of poly-si and capacitance between poly-si/Al

~100e

w/ BR

120

140

100

13th Dec 2019

40

60

Noise [e]

400

350

300

250

200

150 100

50

0

Number of Pixels

No BR

20

Pixe 2018

200

(RD53A)

~230e

w/BR

400

300

bias

STD N⁺

STD N⁺

Large N⁺

500

Large N⁺ no bias

NoiseDist(N⁺ size)

- Compared top Al size

• Smaller Al have smaller noise

Affected by Capacitance between Poly-si and Al

13th Dec 2019

Pixe 2018

p+

- SiO2 thickness comparison
 - Compared SiO2 thickness btw Poly-si and Al
 - Thicker SiO2 have smaller noise
 - <u>Compared SiO2 thickness btw Poly-si and n+</u>
 - No visible difference

Affected by Capacitance between Poly-si and Al

12

Pixe 2018

Poly-si resistivity comparison

– <u>Compare 0.67ΜΩ, 2ΜΩ, 6ΜΩ</u>

Larger resistivity have smaller noise

Highly affected by poli-si resistivity

NoiseDist(Poly-Si resistor)

13th Dec 2019

- Noise is affected by poly-si resistivity and capacitor btw polysi and Al
 - Tested Smaller top Al & thicker SiO2 & higher poly-si resistivity
 - Indeed the condition is the best, resistivity is highest contribution

13th Dec 2019

Pixe 2018

Poly-si resistivity after Irradiation

- Measurement done using TEG with the same poly-si resister pattern.
 - Compared various sheet resister target wafers.
 - Tested 0.6M Ω , 2M Ω , 4M Ω , 6M Ω
 - Can achieve >5MΩ

Noise measurement after irradiation

• For default type :

- Compared before and after irradiation

 Smaller noise after irradiation due to high resistivity after 3x10¹⁵n_{eq}/cm² irradiation

NoiseDist

13th Dec 2019

Efficiency loss due to charge sharing

- Charge sharing effect
 - After proton irradiation, about 8k electron-hole pair created by ionizing loss of MIP particle in 150um thick sensor.
 - At the corner of pixel, charge is splitting to 4 pixels (2ke each).
 - Efficiency loss occur if the comparator threshold of readout ASIC is >2ke.
 - In case of 50um x 250um pixel efficiency loss are ~1% to overall efficiency @ 2400e.
- Finer pixel size (50um x 50um)
 - expected to 5 times larger effect than 50um x 250um pixels.
 - Lower noise ASICs than FE-I4 helped to improve efficiency i.e. FE65p2 and/or RD53A
 - No visible efficiency drop for FE65p2 but there was issue for the absolute value of efficiency

Tested RD53A modules

K.Nakamura et. al. NIM A: doi.org/10.1016/j.nima.2018.09.015

Efficiency results (non-irrad)

- Results with 2000e thresholds.
 - Efficiency is over 99% for all types.
 - Still checking the proper mask has been applied.
 - No visible efficiency drop at the corner of pixel.
 - 20V is already enough voltage to have 99% efficiency.

Efficiency result (irrad 3x10¹⁵n_{eq}/cm²)

- Efficiency results of HV scan 200-800V have been evaluated.
 - Analyzed both 1500e and 2400e threshold data for different types.
 - All types have over 98% efficiency at 600V.
 - 1500e threshold results have over 99% efficiency.
 - Small n+ w/ BR have low efficiency at 200V

13th Dec 2019

Conclusion and plan

- Conclusion
 - Develop optimized sensor structure for HL-LHC ATLAS phase-II upgrade.
 - New sensor mask compatible to the RD53A ASIC has been developed.
 - Pixel with Biasing structure have larger noise.
 - Larger resistivity and smaller capacitance btw poly-si/Al improve this.
 - Best design have 150e increase by BR.
 - Efficiency results
 - Non-irrad sample have over 99% efficiency
 - Irrad module have over 98 % efficiency for both w/ and w/o BR.

Satisfied ATLAS ITK-pixel requirements

- Plan
 - Understanding the source of noise with Spice Simulation of RD53A ASIC with resister between input pads.
 - Quad sensor production as the final design of ATLAS ITk modules.

Contributer

- Koji Nakamura, Yoichi Ikegami, Kazunori Hanagaki, Manabu Togawa, Yoshinobu Unno (KEK)
- Kazuki Uchiyama, Daigo Harada, Kyoji Onaru, Kazuhiko Hara (Tsukuba)
- Yuto Nakamura, Osamu Jinnouchi (Tokyo Tech.)
- Shintaro Kamada, Yohei Abo, Kazuhisa Yamamura, Hirokazu Yamamoto (HPK)

- Check only DIFF FE
 - Measured by threshold scan by YARR
 - -20V bias supplied.
 - Compered with and w/o Bias structure
 - No BR~ 80e, With BR~ 230e (increase 215e)
 - <u>Compared n+ size</u>
 - No major difference for both w/ and w/o BR.

NoiseDist(N⁺ size)

13th Dec 2019

Equivalent circuit

Equivalent circuit

Location of efficiency drop

 In case of small n+ size, Efficiency drop at the corner which wide bias rail located. (3x10¹⁵ irrad @800V)

Efficiency loss per pixel (FE-I4)

13th Dec 2019

Results : irrad 3x10¹⁵n_{eq}/cm² (FE65p2)

- Projection of In-pixel efficiency
 - For both 25x100um and 50x50um pixel size, efficiency loss at the pixel boundary at 600V are consistent to Zero. For 25x100um w/ bias str at 400V(left blue) E_{loss}=0.90±0.05%.
 - 200V 25x100um w/ bias str is also shown(left red).

Pixe 2018

Flip chipping development

Development of Lead-free(SnAg) Bumpbonding (Since 2012)

- No Flux used 1.
 - confirmed flux improve connection, though

No backside compensation 2.

- Improvement of Vacuum chuck jig to hold and flatten the ASIC/Sensor...(jig size ~ FE-I4 area)
- Special UBM (key element: cannot tell *3*. much...)
- **Hydrogen plasma reflow** to remove surface **Final unit** 4.
- Thin sensor/Thin ASIC : 150um/150um
 - Established Bumpbonding method in the beginning of 2016.
 - Quite stable quality for both single and four ASICs. 100% yield for last one year (>100 chips are bumpbonded.)

K. Nakamura et al 2015 JINST 10 C06008

Optimization of Bias structure

Very first module HPK produced have critical efficiency loss at the inter pixel region.

13th Dec 2019

K. Nakamura et al 2015 JINST 10 C06008

Optimization of Bias structure

13th Dec 2019

Charge sharing v.s. threshold 2016Aug Th3000e HV=1000V

2016Nov with 2200e HV=917V

Th3000e – Th2200e

Bias rail to GND v.s. floating

- We took testbeam data with floating Bias rail long time.
- For the ASIC point of view, amplifier should have low noise with bias rail to GND. (by Maurice.)

Bias rail to GND v.s. floating

- We took testbeam data with floating Bias rail long time.
- For the ASIC point of view, amplifier should have low noise with bias rail to GND.

Field to make efficiency drop by BR is milder in case BR floating?

