



**Gemma Tinti for the Swiss Light Source Detector Group** 

# EIGER: high frame rate pixel detector for synchrotron and electron microscopy applications

**PIXEL 2018** 



### SLS-detector group detectors

|                          |                    | EIGEN SOUK         |                       |                       | AND AMERICAN AND AND AND AND AND AND AND AND AND A |                       |
|--------------------------|--------------------|--------------------|-----------------------|-----------------------|----------------------------------------------------|-----------------------|
|                          | MYTHEN<br>II&III   | EIGER              | GOTTHARD<br>I & II    | JUNGFRAU              | MÖNCH                                              | AGIPD                 |
| 1D/2D                    | Strip              | Pixel              | Strip                 | Pixel                 | Pixel                                              | Pixel                 |
| Working<br>Mechanism     | Photon<br>Counting | Photon<br>Counting | Charge<br>Integrating | Charge<br>Integrating | Charge<br>Integrating                              | Charge<br>Integrating |
| Strip/Pixel<br>size [µm] | 50                 | 75×75              | 25/50                 | 75×75                 | 25×25                                              | 200×200               |

Poster X.Shi

R. Dinapoli on Thursday

PSI EIGER: high frame rate pixel detector:

- 1) synchrotron
- 2) electron microscopy



#### **EIGER: ASIC characteristics**

#### Single photon counter

| Monochromatic > | ⟨-ra <u>ys</u> ₀ |                                   |
|-----------------|------------------|-----------------------------------|
| ⊏J <del>※</del> | Adj. Gain        | Global Threshold V <sub>cmp</sub> |
| L <b>∀</b>      |                  |                                   |
|                 | 1                | counter                           |
|                 |                  |                                   |

Single photon counting detector

| Pixel size                            | 75 x 75 um <sup>2</sup>                                           |
|---------------------------------------|-------------------------------------------------------------------|
| Pixel matrix                          | 256 x 256                                                         |
| Counter                               | 4/8/12 bit                                                        |
| Frame rate                            | 23/12/8 kHz                                                       |
| Data rate                             | 6 Gb/s                                                            |
| Threshold adj. bits                   | 6                                                                 |
| Threshold dispersion (after trimming) | <10 e⁻                                                            |
| Noise                                 | 100-200* e⁻ RMS                                                   |
| Rate capabilities (10% deviation)*    | 500 k counts/pixel/s $\rightarrow$ 90 Mphotons/mm <sup>2</sup> /s |
| Dead time                             | 4 us (with buffering)                                             |

<sup>\*</sup>Depending on gain setting





EIGER: 500k pixel single module

- 2x4 chips
- Single 4x8 cm<sup>2</sup> silicon sensor
- Sensor thickness 320 μm

#### No dead area in a single module!







### EIGER: Readout System



- Image summation 12 → 32 bit
- Data buffering
  - → preserve high frame rate capability
- Possibility to apply corrections

Half module is basic readout unit.

A module is readout as 2 half modules (20 Gb/s)



### Very high frame rate detector

| Dynamic range (bit) | Buffered max<br>frame rate<br>(kHz) | Data buffered<br>(# images) |
|---------------------|-------------------------------------|-----------------------------|
| 4                   | 22                                  | 30000                       |
| 8                   | 11                                  | 15000                       |
| 12                  | 6                                   | 7600                        |
| 32                  | 2                                   | Online sum                  |





Displayed normalized to 30 imgs/s

High frame rate at synchrotrons: 20 kHz Time evolution: K. Woll's group (KIT) As-deposited 1200 Temperature (°C) Powder sample with ultra fast heating 400 MS + microXAS beamlines @ SLS 50 60 Time (ms)  $g_2(q,t) - 1$ **ID02 @ESRF** colloids Eiger 500k 66 - 95 m XPCS technique (Advective) detector & 62 m Eiger beamstop sample 0.08 guard slit S5  $g_2(q,t) - 1$ secondary slit S4 0.06 secondary slit S3 double mirror 0.005 0.010

T. Zinn et al.,

J. Synchrotron Rad. (2018). 25

toroidal & planar

monochromator

27.5 m

primary slit P1

26

(c)

0.0035 (nm<sup>-1</sup>)

0.0045 (nm<sup>-1</sup>)

0.0060 (nm<sup>-1</sup>) 0.0075 (nm<sup>-1</sup>) 0.0090 (nm<sup>-1</sup>)

0.0105 (nm<sup>-1</sup>)

q [nm<sup>-1</sup>]

10-1

10-2

t[s]

Pilatus 300k

(Advective)

 $10^{-3}$ 

0.00

10-4



### Detector occupancy

#### **POWDER DIFFRACTION**



Diffraction pattern recorded at 20kHz (45 μs exposure + 5 μs)

Occupancy here defined as: # pixels with hits/# pixels

Occupancy~ 4%

With optimization of the sample  $^{1}x \times 10^{3}$  thickness it is expected to gain a factor 5-10 in hits

Diffraction recorded at 20kHz

Occupancy ~11%

Obtained from calibration
 sample: more representative
 occupancy





### Online compression studies

| Dynamic range (bit) | Continuous     | Buffered max | Data     |
|---------------------|----------------|--------------|----------|
|                     | frame rate @10 | frame rate   | buffered |
|                     | Gb (kHz)       | (kHz)        | (images) |
| 4                   | 10.2           | 22           | 30000    |

## 2x10 GbE links/module are bottle neck

We need compression factor x2.2 to go continuous

- HIT BASED READOUT: only if OCCUPANCY < 14% module</li>
  - Send address and value only of pixel with hits
  - Typically we have a few % occupancy
- ZERO COMPRESSION: instead of writing all the half-bytes that are zeros, write a
  flag and #half-bytes that are zero:
  - 0000 0000 0000 0000 0001 -> 1111 0100 0001
  - Real 1111-> 1110, Real 1110-> 1111 0001

This study refers only to powder diffraction data

| Dataset        | Hit based readout | Zero compression | Reference GZIP,<br>level 2 offline |
|----------------|-------------------|------------------|------------------------------------|
| Low occupancy  | 3.2               | 5.9              | 11.5 in 8 bit                      |
| High occupancy | 1.4               | 3.4              | 6.9 in 8 bit                       |



### **EIGER:** Larger systems

- Modules can be tiled to large area detectors
- Due to the parallel design there is no penalty in performance when moving from a single module to multi module systems





### PSI Eiger 1.5 and 9M detectors for cSAXS beamline



- 1.5 M in user operation since April 2018
- 9M foreseen user operation Feb 2019



3 modules





Phase I: User operation at minimum 25 Hz for 32-bit starting from Feb 2019 Expected: 42 Hz, 1.6GB/s. The detector can send out up to 45 GB/s



EIGER: high frame rate pixel detector:

- 1) synchrotron
- 2) electron microscopy



### EIGER in electron microscopy

- PEEM Photo Emission Electron
   Microscopy Imaging
  - ELMITEC, SIM Beamline SLS





- TEM Transmission electron microscopy -Electron Diffraction/(Imaging)
  - Prof. Jan Pieter Abrahams C-CINA/PSI



- Quad:
- active area 4x4 cm<sup>2</sup>
- In vacuum
- For energies <=100 keV, hybrid pixels are an "ideal detector"
- At higher energies, EIGER is appealing thanks to frame rate: scanning/rotation techniques, imaging single electrons, reducing sample drift



### EIGER as an electron detector







#### Completely rad hard for 8-20 keV e<sup>-1</sup>



#### e interaction:

- lose energy due to multiple collisions with atomic electrons
- Deposit energy in multiple points due to multiple scattering
- Al layer can be etched away
- e-lose part of their energy in Si backplane

| Cham dand         | Material crossed | 20 keV<br>e <sup>-</sup> | 10 keV e <sup>-</sup> |
|-------------------|------------------|--------------------------|-----------------------|
| Standard entrance | Al 1 μm          | 2.6 keV                  | 5.0 keV               |
| window            | Si 1.5 μm        | 3.0 keV                  | 4.0 keV               |

Tinti et al, J. Synchrotron Rad 24 (2017)



### FBK thin entrance window sensors

#### Sensor produced by FBK Trento:

#### Al has also been etched away

- 1. As implant tested (~200 nm)
- 2. As implant low energy still to be tested

Tested with a TEM from J.P. Abrahams's group

|                           | ;   | ×10 <sup>6</sup> |       |     |    |     |       |          |     | 2  | 0 k | e\  | <b>V</b> |          |     |      |          |      |        |       |         |  |
|---------------------------|-----|------------------|-------|-----|----|-----|-------|----------|-----|----|-----|-----|----------|----------|-----|------|----------|------|--------|-------|---------|--|
| a.u.)                     |     | _                |       |     |    |     |       |          |     |    |     |     |          |          |     |      | :        |      | :      |       | i       |  |
| d(counts/pixel)/dE (a.u.) | 120 | _<br><br>_       |       |     |    |     |       |          |     |    | Λ   |     |          |          |     | _    | new s    | enso | r. Ale | tched |         |  |
| (le                       | 100 | _<br>            |       |     |    |     |       |          |     | 1  |     |     |          |          |     | _    |          |      | ,,,,,, | tonou |         |  |
| is/pi                     | 100 | _                |       |     |    |     |       |          |     | I  |     | 1   |          |          | L   |      |          |      |        |       | $\perp$ |  |
| ount                      | 80  | _<br><br>-       |       |     |    |     |       |          | 1   | ļ  |     | \   |          |          |     |      |          |      |        |       |         |  |
| 9                         | 60  | _<br>            |       |     |    |     |       |          | f   |    |     | 1   | <b>.</b> |          |     |      |          |      |        |       |         |  |
|                           |     | _                |       |     |    |     |       | 1        | •   |    |     |     | \        |          |     |      |          |      |        |       |         |  |
|                           | 40  | _<br><br>-       |       |     |    |     | , man | <u> </u> |     |    |     |     | +        |          |     |      |          |      |        |       | -       |  |
|                           | 20  |                  | ***** | -   |    |     |       |          |     |    |     |     | 1        | <b>.</b> |     |      | <u>.</u> |      |        |       |         |  |
|                           |     | _                |       |     |    |     |       |          |     |    |     |     |          | Ţ        |     |      |          |      |        |       |         |  |
|                           | ا٥  | 120              | 000   | 140 | 00 | 160 | 000   | 180      | 000 | )  | 200 | 000 | )        | 220      | 000 | 24   | 000      | 2    | 6000   | 28    | 3000    |  |
|                           |     |                  |       |     |    |     |       |          |     | tl | nre | sł  | ol       | d c      | on  | vert | ed       | to e | enei   | rgy ( | eV)     |  |

| Material crossed | 20 keV<br>e <sup>-</sup> | 10 keV e <sup>-</sup> |
|------------------|--------------------------|-----------------------|
| Si 500 nm        | 1.2 keV                  | 2.0 keV               |
| Si 200 nm        | 0.5 keV                  | 0.9 keV               |

 $19.5 \text{keV} \pm 0.9 \text{ keV RMS}$ 

0.5keV lost in entrance window



### Spatial resolution with low energy electrons

#### 20 keV electrons



edge

- When setting the threshold to half of the electron energy, we have single pixel resolution
- Fitting with a ErrFunction: resolution is 22  $\mu$ m, compatible with 75  $\mu$ m/sqrt(12)

#### Tinti et al, IUCrJ 5(2) (2018)



edge

#### 100-300 keV electrons



100 keV: Setting the threshold>50%, we recover single pixel resolution



100keV: Good for imaging and diffraction



The size of interaction is large: high threshold records higher energy hit but not entrance hit E=300 keV



200-300keV: Good for diffraction



Conclusions

9M OMNY 1.5M



- The high frame rate make PSI EIGER unique: time resolved experiments are possible
- EIGER works well for low energy electrons (<=100keV) both for PEEM and TEM applications
- The fast frame rate capability makes EIGER interesting also for TEM applications at 200-300 keV
- We are working to reach even higher frame rates selecting a subsection of the chip or to have compression on board to reach continuous fast frame rate operation



0.25M

ESRF 2x0.5N



### Acknowledgements



Back: (Marie Ruat,) Bernd Schmitt, Sophie Redford, Aldo Mozzanica, Erik Fröjdh.

Middle: Jiaguo Zhang, Carlos Lopez, Marie Andrä, Rebecca Barten, Martin Brückner, Christian Ruder,

#### **Dominic Greiffenberg, Seraphin Vetter.**

Front: Xintian Shi, **Dhanya Thattil**, Gemma Tinti, Anna Bergamaschi, (Marco Ramilli,) **Roberto Dinapoli**, Davide Mezza.

Not in picture: Sabina Chiriotti Alvarez



#### 1MeV electrons

hits are recorded

spatial resolution

a bit worse than

We expect a

single pixel



- We expect the peak of the Laundau to be around 110 keV: 55 keV threshold
- Calibrated the detector threshold up to 110keV

8.399 / 5 3914 ± 37.14

 $-0.06547 \pm 0.002106$ 2.744e-07  $\pm 2.35$ e-08

Eth=80 keV

Eth=90 keV

Eth=100 keV

4.5

cluster size

3.5



0.6





### Experiments at synchrotrons





ALL compression findings for powder diffraction does not automatically apply to all experiments

#### **XPCS** average and single **ESRF ID02** beamline



J. Synchrotron Rad. (2018). 25

#### Ptychography cSAXS beamline











| <u> </u>     |                         | Threshold dispersion               | <10 e <sup>-</sup>                                                |  |  |  |
|--------------|-------------------------|------------------------------------|-------------------------------------------------------------------|--|--|--|
| Pixel size   | 75 x 75 um <sup>2</sup> | (after trimming)                   |                                                                   |  |  |  |
| Pixel matrix | 256 x 256               | Noise                              | 100-200 <sup>*</sup> e⁻ RMS                                       |  |  |  |
| Frame rate   | 23/12/8 kHz             | Rate capabilities (10% deviation)* | 500 k counts/pixel/s $\rightarrow$ 90 Mphotons/mm <sup>2</sup> /s |  |  |  |
| Data rate    | 6 Gb/s                  | Dead time                          | 4 us (with buffering)                                             |  |  |  |

### PAUL SCHERRER INSTITUT

### Very high frame rate





| Threshold dispersion (after trimming) | <10 e <sup>-</sup>                                                |
|---------------------------------------|-------------------------------------------------------------------|
| Noise                                 | 100-200* e- RMS                                                   |
| Rate capabilities (10% deviation)*    | 500 k counts/pixel/s $\rightarrow$ 90 Mphotons/mm <sup>2</sup> /s |
| Dead time                             | 4 us (with buffering)                                             |

→ Serial OUT

| Pixel size   | 75 x 75 um <sup>2</sup> |
|--------------|-------------------------|
| Pixel matrix | 256 x 256               |
| Frame rate   | 23/12/8 kHz             |
| Data rate    | 6 Gb/s                  |



#### Threshold calibration







- Each **preamplifier gain** covers a different range of photon energies
- The threshold setting needs to be calibrated into photon energy
- Threshold is calibrated to be uniform in the detector and its dispersion is negligible (down to 10 e<sup>-</sup>) in comparison to noise
- The noise at high gain is < 100 e<sup>-</sup>
- Threshold can be set at > 2 keV (depending on the readout settings)



#### Online rate correction

## Single subframes recorded up to 2kHz frame rate can be corrected online, before summation



### PAUL SCHERRER INSTITUT

### Rate correction as a function of energy







For the same energy, lower gain improves the rate capabilities

Paralizable counter model:

$$N_{det} = N_{inc} \cdot e^{-N_{inc} \cdot \tau}$$

Linerity at 90%:

200 - 600

kcounts/pixel/s

Rate capability depend on the energy!



### Rate corrections in 8 bit mode

$$N_{det} = N_{inc} \cdot e^{-N_{inc} \cdot \tau}$$

If  $\Phi=1.5 \text{ MHz/pix}$ , t=80 us,  $N_{inc}=120$ 

Maximum flux

Chosen for linearity







#### Errors on corrected value 20%:

- Statistical uncertainty in N<sub>d</sub>:  $\sigma = 20\%$
- Pixel to pixel differences in tau:  $\sigma = 2 - 15\%$
- $\tau$ =400 ns
- Rate corrections can be applied to 8bit data as N<sub>inc</sub> does not exceed  $N_{det} < N_{inc}$ 8bit depth (254)
- Rate correction, if wanted in firmware, needs to be implemented for 8bit data
- If more than 1 image taken in same condition → better to sum before and correct with higher statistics



### Charge sharing





