EIGER: high frame rate pixel detector for synchrotron and electron microscopy applications
<table>
<thead>
<tr>
<th></th>
<th>MYTHEN II&III</th>
<th>EIGER</th>
<th>GOTTHARD I & II</th>
<th>JUNGFRAU</th>
<th>MÖNCH</th>
<th>AGIPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D/2D</td>
<td>Strip</td>
<td>Pixel</td>
<td>Strip</td>
<td>Pixel</td>
<td>Pixel</td>
<td>Pixel</td>
</tr>
<tr>
<td>Working Mechanism</td>
<td>Photon Counting</td>
<td>Photon Counting</td>
<td>Charge Integrating</td>
<td>Charge Integrating</td>
<td>Charge Integrating</td>
<td>Charge Integrating</td>
</tr>
<tr>
<td>Strip/Pixel size [µm]</td>
<td>50</td>
<td>75×75</td>
<td>25/50</td>
<td>75×75</td>
<td>25×25</td>
<td>200×200</td>
</tr>
</tbody>
</table>

PSI EIGER: high frame rate pixel detector:

1) synchrotron
2) electron microscopy
EIGER: ASIC characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>75 x 75 um²</td>
</tr>
<tr>
<td>Pixel matrix</td>
<td>256 x 256</td>
</tr>
<tr>
<td>Counter</td>
<td>4/8/12 bit</td>
</tr>
<tr>
<td>Frame rate</td>
<td>23/12/8 kHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>6 Gb/s</td>
</tr>
<tr>
<td>Threshold adj. bits</td>
<td>6</td>
</tr>
<tr>
<td>Threshold dispersion (after trimming)</td>
<td><10 e⁻</td>
</tr>
<tr>
<td>Noise</td>
<td>100-200* e⁻ RMS</td>
</tr>
<tr>
<td>Rate capabilities (10% deviation)*</td>
<td>500 k counts/pixel/s → 90 Mphotons/mm²/s</td>
</tr>
<tr>
<td>Dead time</td>
<td>4 us (with buffering)</td>
</tr>
</tbody>
</table>

Depending on gain setting
EIGER: 500k pixel single module

- 2x4 chips
- Single 4x8 cm2 silicon sensor
- Sensor thickness 320 μm

No dead area in a single module!

EIGER module equipped with ASICs but no sensor

2x-size pixel

4x-size pixel

Corrected only for geometry

interpolated
EIGER: Readout System

- Image summation: 12 → 32 bit
- Data buffering: preserve high frame rate capability
- Possibility to apply corrections

Half module is basic readout unit. A module is readout as 2 half modules (20 Gb/s)
Very high frame rate detector

<table>
<thead>
<tr>
<th>Dynamic range (bit)</th>
<th>Buffered max frame rate (kHz)</th>
<th>Data buffered (# images)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>22</td>
<td>30000</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>15000</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>7600</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>Online sum</td>
</tr>
</tbody>
</table>

Displayed normalized to 30 imgs/s
High frame rate at synchrotrons: 20 kHz

K. Woll’s group (KIT)

Powder sample with ultra fast heating

MS + microXAS beamlines @ SLS

ID02 @ESRF

XPCS technique

Detector occupancy

Diffraction pattern recorded at 20kHz (45 μs exposure + 5 μs)

Occupancy here defined as: # pixels with hits/# pixels

Occupancy ~ 4%

With optimization of the sample thickness it is expected to gain a factor 5-10 in hits

Diffraction recorded at 20kHz

Occupancy ~ 11%

Obtained from calibration sample: more representative occupancy
Online compression studies

<table>
<thead>
<tr>
<th>Dynamic range (bit)</th>
<th>Continuous frame rate @10 Gb (kHz)</th>
<th>Buffered max frame rate (kHz)</th>
<th>Data buffered (images)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10.2</td>
<td>22</td>
<td>30000</td>
</tr>
</tbody>
</table>

2x10 GbE links/module are bottle neck

We need compression factor \(x2.2\) to go continuous

- **HIT BASED READOUT:** only if OCCUPANCY < 14% module
 - Send address and value only of pixel with hits
 - Typically we have a few % occupancy

- **ZERO COMPRESSION:** instead of writing all the half-bytes that are zeros, write a flag and #half-bytes that are zero:
 - \(0000\ 0000\ 0000\ 0000\ 0001 \rightarrow 1111\ 0100\ 0001\)
 - Real 1111-> 1110, Real 1110-> 1111 0001

This study refers only to powder diffraction data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Hit based readout</th>
<th>Zero compression</th>
<th>Reference GZIP, level 2 offline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low occupancy</td>
<td>3.2</td>
<td>5.9</td>
<td>11.5 in 8 bit</td>
</tr>
<tr>
<td>High occupancy</td>
<td>1.4</td>
<td>3.4</td>
<td>6.9 in 8 bit</td>
</tr>
</tbody>
</table>
• Modules can be tiled to large area detectors
• Due to the parallel design there is no penalty in performance when moving from a single module to multi module systems

EIGER: Larger systems

2M pixels

9M pixels
PSI Eiger 1.5 and 9M detectors for cSAXS beamline

- 1.5 M in user operation since April 2018
- 9M foreseen user operation Feb 2019
Detector integration concept

Detector: 18 modules
36x10GbE

TCP x36
UDP stream x36
x72 receivers on a server

Control PC
beamline

Storage (GPFS)
Limited to 1.6GB/s currently

TCP x36

Limited to 2GB/s

zmq

Limited to 360Gb/s

writer

Limited to 1.6GB/s currently

zmq

data (metadata added from client)

Phase I: User operation at minimum 25 Hz for 32-bit starting from Feb 2019
Expected: 42 Hz, 1.6GB/s. The detector can send out up to 45 GB/s

• Independent half modules
• Parallel data processing/transfer
• 9 M with 36 half modules (18 modules) 360Gb/s
EIGER: high frame rate pixel detector:
1) synchrotron
2) electron microscopy
EIGER in electron microscopy

- **PEEM - Photo Emission Electron Microscopy - Imaging**
 - ELMITEC, SIM Beamline SLS
 - 20keV Electrons

- **TEM - Transmission electron microscopy - Electron Diffraction/(Imaging)**
 - Prof. Jan Pieter Abrahams C-CINA/PSI
 - 100 – 300 keV

- **Quad:**
 - active area 4x4 cm²

- In vacuum

- For energies <=100 keV, hybrid pixels are an “ideal detector”

- At higher energies, EIGER is appealing thanks to frame rate: scanning/rotation techniques, imaging single electrons, reducing sample drift
EIGER as an electron detector

Electron interaction with a pixel

200-300 keV Multi-pixel cluster

MIP regime

sensor thickness

pixel size

range

lateral jitter

e⁻ in Si

Energy (keV)

distance (µm)

<=100 keV

Energy (MeV/cm)

10

10^2

10^3

10^4

10^5
Low energy electron interaction $\leqslant 20$ keV

- e^- interaction:
 - lose energy due to multiple collisions with atomic electrons
 - Deposit energy in multiple points due to multiple scattering
- Al layer can be etched away
- e^- lose part of their energy in Si backplane

<table>
<thead>
<tr>
<th>Material crossed</th>
<th>20 keV e^-</th>
<th>10 keV e^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 1 μm</td>
<td>2.6 keV</td>
<td>5.0 keV</td>
</tr>
<tr>
<td>Si 1.5 μm</td>
<td>3.0 keV</td>
<td>4.0 keV</td>
</tr>
</tbody>
</table>

FBK thin entrance window sensors

Sensor produced by FBK Trento:

1. **As implant** tested (~200 nm)
2. As implant low energy still to be tested

Al has also been etched away

Tested with a TEM from J.P. Abrahams’s group

<table>
<thead>
<tr>
<th>Material crossed</th>
<th>20 keV e^-</th>
<th>10 keV e^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si 500 nm</td>
<td>1.2 keV</td>
<td>2.0 keV</td>
</tr>
<tr>
<td>Si 200 nm</td>
<td>0.5 keV</td>
<td>0.9 keV</td>
</tr>
</tbody>
</table>

19.5 keV ± 0.9 keV RMS

0.5 keV lost in entrance window
Spatial resolution with low energy electrons

- When setting the threshold to half of the electron energy, we have single pixel resolution
- Fitting with a ErrFunction: resolution is 22 μm, compatible with 75 μm/sqrt(12)
100-300 keV electrons

100 keV: Setting the threshold > 50%, we recover single pixel resolution

The size of interaction is large: high threshold records higher energy hit but not entrance hit

Spatial resolution Best $\sigma = \sim 23$ um

100 keV: Good for imaging and diffraction

200-300 keV: Good for diffraction

Tinti et al, IUCrJ 5(2) (2018)
Conclusions

- We have shown that several EIGER PSI systems are in use for experiments at synchrotrons.
- The high frame rate makes PSI EIGER unique: time-resolved experiments are possible.
- EIGER works well for low energy electrons (<=100keV) both for PEEM and TEM applications.
- The fast frame rate capability makes EIGER interesting also for TEM applications at 200-300 keV.
- We are working to reach even higher frame rates selecting a subsection of the chip or to have compression on board to reach continuous fast frame rate operation.
Acknowledgements

Back: (Marie Ruat,) **Bernd Schmitt**, Sophie Redford, Aldo Mozzanica, **Erik Fröjdh**.

Middle: Jiaguo Zhang, Carlos Lopez, Marie Andrä, **Rebecca Barten**, **Martin Brückner**, Christian Ruder, **Dominic Greiffenberg**, Seraphin Vetter.

Front: Xintian Shi, **Dhanya Thattil**, Gemma Tinti, Anna Bergamaschi, (Marco Ramilli,) **Roberto Dinapoli**, Davide Mezza.

Not in picture: Sabina Chiriotti Alvarez
1MeV electrons

- We expect the peak of the Landau to be around 110 keV: 55 keV threshold
- Calibrated the detector threshold up to 110keV

^{90}Sr with a momentum selector for electrons

Christian Joram (CERN)

Lukas Gruber (CERN)

- At a threshold >60 keV, mainly single hits are recorded
- We expect a spatial resolution a bit worse than single pixel
Experiments at synchrotrons

Protein crystallography PX beamlines

ALL compression findings for powder diffraction does not automatically apply to all experiments

XPCS average and single ESRF ID02 beamline

Ptychography cSAXS beamline
EIGER chip

Circuit Diagram

- **Trimbit ins/Counter Outs**
- **Preamp + Shaper**
- **Sensor**
- **Adj. Gain**
- **Global Threshold**
- **Discriminator**
- **Enable Overflow**
- **Counter Mode**
- **Reset**
- **Store**
- **Overflow**

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>75 x 75 um²</td>
</tr>
<tr>
<td>Pixel matrix</td>
<td>256 x 256</td>
</tr>
<tr>
<td>Frame rate</td>
<td>23/12/8 kHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>6 Gb/s</td>
</tr>
<tr>
<td>Threshold dispersion</td>
<td><10 e⁻</td>
</tr>
<tr>
<td>Noise</td>
<td>100-200* e⁻ RMS</td>
</tr>
<tr>
<td>Rate capabilities</td>
<td>500 k counts/pixel/s → 90 Mphotons/mm²/s</td>
</tr>
<tr>
<td>Dead time</td>
<td>4 us (with buffering)</td>
</tr>
</tbody>
</table>
Very high frame rate

<table>
<thead>
<tr>
<th>Threshold dispersion (after trimming)</th>
<th><10 e⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>100-200* e⁻ RMS</td>
</tr>
<tr>
<td>Rate capabilities (10% deviation)*</td>
<td>500 k counts/pixel/s → 90 Mphotons/mm²/s</td>
</tr>
<tr>
<td>Dead time</td>
<td>4 µs (with buffering)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pixel size</th>
<th>75 x 75 um²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel matrix</td>
<td>256 x 256</td>
</tr>
<tr>
<td>Frame rate</td>
<td>23/12/8 kHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>6 Gb/s</td>
</tr>
</tbody>
</table>
Threshold calibration

- Each preamplifier gain covers a different range of photon energies.
- The threshold setting needs to be calibrated into photon energy.
- Threshold is calibrated to be uniform in the detector and its dispersion is negligible (down to 10 e⁻) in comparison to noise.
- The noise at high gain is < 100 e⁻.
- Threshold can be set at > 2 keV (depending on the readout settings).
Online rate correction

Single subframes recorded up to 2kHz frame rate can be corrected online, before summation.

Linearity is restored up to 1.2 Mcounts/pix/s.

Subframes acquired at 500Hz (2ms/subframe)
Rate correction as a function of energy

Monochromatic X-rays

Adj. Gain

Threshold V_{cmp}

Counter

PILE UP

E

I

For the same energy, lower gain improves the rate capabilities

Paralizable counter model:

$$N_{\text{det}} = N_{\text{inc}} \cdot e^{-N_{\text{inc}} \cdot \tau}$$

Linerity at 90% :

200 - 600 kcounts/pixel/s

Rate capability depend on the energy!
Rate corrections in 8 bit mode

\[N_{\text{det}} = N_{\text{inc}} \cdot e^{-N_{\text{inc}} \cdot \tau} \]

If \(\Phi=1.5 \text{ MHz/pix} \), \(t=80 \text{ us} \), \(N_{\text{inc}}=120 \)

Maximum flux
Chosen for linearity
Margin from 8bit saturation

Errors on corrected value~ 20%:
- Statistical uncertainty in \(N_d \):
 \(\sigma=20\% \)
- Pixel to pixel differences in tau:
 \(\sigma=2 \text{ -15\%} \)
- \(\tau=400 \text{ ns} \)

- \(N_{\text{det}} < N_{\text{inc}} \)
 Rate corrections can be applied to 8bit data as \(N_{\text{inc}} \) does not exceed 8bit depth (254)

- **Rate correction, if wanted in firmware, needs to be implemented for 8bit data**
- If more than 1 image taken in same condition → better to sum before and correct with higher statistics
Charge sharing