PIXEL 2018

10-14 December, 2018 Academia Sinica, Taipei the 9th International workshop on Semiconductor Pixel Detectors for Particles and Imaging

EROT

iversité

PNHE

Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

M. Bomben, LPNHE & UPD – Paris on behalf of the ATLAS collaboration

- Introduction
- ATLAS Radiation Damage Digitizer Goals
- Digitizer: implementation strategy and ingredients
- Validation
- Predictions
- Conclusion & Outlook

The CERN Large Hadron Collider (LHC)

CERN LHC is the largest and most powerful particle accelerator ever built

It provides proton-proton collisions at energies up to $\sqrt{s} = 13 \text{ TeV}$

LHC design luminosity was 1x10³⁴ cm⁻²s⁻¹

Design value has been widely exceeded!

The CERN Large Hadron Collider (LHC)

LHC design luminosity was 1x10³⁴ cm⁻²s⁻¹

Design value has been widely exceeded!

Large dataset integrated over first 2 LHC Runs: > 180 fb⁻¹

CERN LHC is the largest and most powerful particle accelerator ever built

It provides proton-proton collisions at energies up to $\sqrt{s} = 13 \text{ TeV}$

The CERN Large Hadron Collider (LHC)

LHC design luminosity was 1x10³⁴ cm⁻²s⁻¹

Design value has been widely exceeded!

Large **fluence** integrated over first 2 LHC Runs: > **9x10¹⁴** n_{eq}/cm² by the innermost pixel layer

CERN LHC is the largest and most powerful particle accelerator ever built

It provides proton-proton collisions at energies up to $\sqrt{s} = 13 \text{ TeV}$

ATLAS Inner Detector

ATLAS Pixel Detector

Pixel sensors: radiation damage effects

Integrated luminosity [fb⁻¹]

Pixel Radiation Damage Digitizer* Goals

*Digitization happens after simulated charge deposition and before space point reconstruction Include all this in ATLAS MonteCarlo

Charge carriers will drift toward the collecting electrode due to **electric field**, which is deformed by **radiation damage**.

Their path will be deflected by magnetic field (Lorentz angle) and diffusion.

Due to radiation damage they can be trapped and induce/screen a fraction of their charge (Ramo potential).

Total induced charge is then digitized and clustered.

Pixel Radiation Damage Digitizer Goals

Include all this in ATLAS MonteCarlo Now ready!

Charge carriers will drift toward the collecting electrode due to **electric field**, which is deformed by **radiation damage**.

Their path will be deflected by magnetic field (Lorentz angle) and diffusion.

Due to **radiation damage** they can be **trapped** and induce/screen a fraction of their charge (**Ramo potential**).

Total induced charge is then digitized and clustered.

Implementation Strategy

Ingredients: fluence and trapping time

Fluence prediction taken from FLUKA & Pythia

FLUKA prediction validated with leakage current and Hamburg model* simulation

➤ 15% difference in the central region

Trapping constants from literature**:

- \succ β_e = (4.5±1.5)x10⁻¹⁶ cm²/ns
- > $\beta_{\rm h} = (6.5 \pm 1.5) \times 10^{-16} \, {\rm cm}^2 / {\rm ns}$

- ** ATLAS pixel coll., JINST 3 (2008) P07007
- G. Kramberger et al., Nucl. Instrum. Meth. A481 (2002) 297
- O. Krasel et al., IEEE Trans. on Nucl. Sci. 51 (2004) 3055.
- G. Alimonti et al., ATL-INDET-2003-014 (2003)

* M. Moll, <u>DESY-THESIS-1999-040</u>

Ingredients: electric field (planar sensors)

Radiation damage induced defects deform the electric field distribution in the bulk

We use TCAD simulation tools to make predictions of electric field in the bulk

A 2 trap model due to CMS collaborators* has been used with Silvaco tools**

Model chosen because:

- developed on n-on-n pixels
- irradiated at CERN w/ 24 GeV/c p
- built on testbeam data
- predicts type inversion at right fluence

Main feature: double peak electric field

*V. Chiochia et al., Nucl. Instr. and Meth A 568 (2006) 51-55 ** https://www.silvaco.com/products/tcad.html

Ingredients: electric field mod. uncertainties

TCAD radiation damage model parameters come with no uncertainties

Fluence	E_T^A	E_T^D	N _A	N_D	$\sigma_e^{A,D} \And \sigma_h^D$	σ_h^A
	(eV)	(eV)	$(10^{14} \ cm^{-3})$	$(10^{14} \ cm^{-3})$	$(10^{-15} \ cm^2)$	$(10^{-15} \ cm^2)$
$(10^{14} \ n_{eq}/cm^2)$	$\pm 0.4\%$	$\pm~0.4\%$	$\pm \ 10\%$	$\pm~10\%$	$\pm~10\%$	$\pm~10\%$
1			3.6	5		
2	E_C -0.52eV	$E_V + 0.48 \text{eV}$	6.8	10	6.60	1.65
5			14	34		

So we had to explore the sensitivity of electric field on each defect parameter:

- concentration
- energy
- electron and hole capture cross sections

Trends are compatible with expectations

Ingredients: annealing

Annealing not modeled in TCAD

Space Charge [e/cm³

4000

2000

-2000

-4000

-6000

-8000

0

Effective correction to TCAD: rescale defects concentration in TCAD to match the average (constant) space charge concentration predicted by Hamburg Model

Hamburg model predictions based on bias voltage scans

M. Bomben - Pixel 2018, 10-14 December, Academia Sinica, Taipei, Taiwan

20

Ingredients: signal from trapped carriers

- Charge drift towards collecting electrode
- They induce larger and larger current the closer they get to the electrode
- If **trapped** only a fraction of the total charge will be induced
- Trapping position is stochastically determined, based on fluence and voltage conditions
- The final signal is calculated in a 3x3 pixels matrix thanks to the Ramo potential

2D slice of 3D Ramo potential calculated using TCAD simulations

Ingredients: Lorentz angle deflection

Validation: Charge Collection Efficiency (CCE)

CCE for IBL across its lifetime

Simulation uncertainties: Horizontal error bars include uncertainties on luminosity to fluence conversion (15%)

Vertical error bars include uncertainties from the TCAD radiation damage model

Data uncertainties

Horizontal error bars includeluminosity unc. (2%)Vertical error bars includecalibration drift effects

Good agreement with data but large uncertainties In the **future collision data** can be used to **further constrain** the **radiation damage model**

Validation: Lorentz angle

Petasecca *et. al,* IEEE TNS 53 (2006) 2971

Lorentz angle is extracted from a fit to the cluster size vs track incident angle

$$F(\alpha) = [a \times (\tan \alpha - \tan \theta_L) + b/\sqrt{\cos \alpha}] \otimes G(\alpha)$$

The trend of increase of Lorentz angle with luminosity is robust

Models predicting no double peak in electric field fail at reproducing increase of L.A. with luminosity

Validation and predictions: HV scans

Standalone simulation to predict MPV of the fitted Landau distribution of the ToT as a function of bias voltage for fixed fluence

Good agreements in both shape and plateau position

This confirms that both the **electric field** and the **trapping time** are correctly reproduced in our modeling!

Predictions now used to **determine** desired **bias voltage** during LHC Run3 for all pixel layers

Predictions: energy loss

Digitizer can be used to make predictions on fundamental observables

Energy loss per layer for tracks with $p_T > 1 \text{ GeV}$

Several scenarios considered, in terms of

- fluence
- bias voltage
- different layer by layer

N.B. other parameters (thr., tuning) fixed

Conclusions and outlook

- Effects of radiation damage to silicon sensor bulk are already visible in the ATLAS pixel detector
- Increasing bias voltage helps mitigating the main effect (signal loss)
- Fundamental to reproduce these effects in simulations
- The new ATLAS digitizer includes radiation damage effects
- First comparison with collision data are promising
- The new digitizer is an essential tool to determine ATLAS Pixel detector data taking future conditions
- Work is ongoing to include 3D modeling and extend predictions to High Luminosity LHC fluence for the new ATLAS Inner Tracker

Backup

ATLAS Detector

Run2 Pixel data taking conditions

RUN-2 HV

HV	2015	2016	2017	2018
IBL	80V 📥	150V 📥	350V 📥	400V
B-layer	250V	350V	350V	400V
Layer-1	150V	200V	200V	250V
Layer-2	150V	150V	150V	250V
Endcap	150V	150V	150V	250V

Threshold	2017	2018
IBL	2500e, ToT>0	2000e , ToT>0
B-layer	5000e, ToT>5	4300e(*), ToT>3
Layer-1	3500e, ToT>5	3500e, ToT>5
Layer-2	3500e, ToT>5	3500e, ToT>5
Endcap	4500e, ToT>5	3500e , ToT>5

(*) M1A/M0/M1C:4300e, otherwise:5000e