

RADIATION-INDUCED EFFECTS ON DATA INTEGRITY AND -LINK STABILITY OF RD53A

PIXEL 2018, TAIPEI

M. VOGT* ON BEHALF OF THE RD53 COLLABORATION

*PHYSIKALISCHES INSTITUT, UNIVERSITÄT BONN

INTRODUCTION - RD53A

The RD53 collaboration is a common effort, shared between ATLAS and CMS

Goal: Development of designs and methods for a hybrid pixel detector readout chip in a 65 nm

technology

 RD53A is the first large (=half) scale demonstrator, produced in 2017, available for testing since 12.2017

- Features of RD53A
 - Three different analog frontend designs and two memory architectures for comparison
 - Fast data link to the readout system
 - Aurora protocol
 - Several configurable data rate options:
 1x 640 Mb/s ... 4x 1.28 Gb/s
 - Designed to withstand at least 500 Mrad

INTRODUCTION

Motivation

- Radiation effects in 65 nm CMOS have been modeled and studied for prototypes
 - Transistor level simulation model, using worst case bias conditions
 - DRAD test chip to study radiation effects on digital standard cells in 65 nm, agrees with models
- In RD53, most of the previous irradiation campaigns focused on the analog front end performance
 → The digital performance of the prototype chip RD53A has to be studied, as RD53B is being designed
- Main focus of this campaign
 - Data link stability and signal integrity, as a function of V_{DDD} , f_{ref} and TID
- 600 Mrad in multiple steps
 - Dose rate: 4.5 Mrad/h for the first 20 Mrad, then 6 Mrad/h
 - During irradiation: The chip is cooled and operated with a monitor script (digital scan, threshold scan, temperature, power consumption)
 - At each TID step: Time consuming and detailed measurements like full shmoo scan and eye diagrams

INTRODUCTION - CDR BYPASS MODE

- Default operation mode: CDR/PLL block generates
 - Command clock: Recovered from the command data stream
 - Serializer: Multiplied (1,2,4,8) command clock
- In order to observe only the digital logic behavior, the chip was operated in CDR-bypass mode
 - Clocks have to be provided externally
 - Generated by the FPGA PLL of the readout system
 - CMD_CLK → **160** ± 20 MHz
- Fixed factor (1, 2, **4***, 8)
- SER_CLK \rightarrow 640* ± 80 MHz $\stackrel{(1, 2, 4)}{\leftarrow}$ *(the chip was operated in 640 Mbit/s mode)

Setup

X-RAY SETUP

X-ray cabinet

- Tungsten target X-ray tube: 60 kV, 58 mA max
- Up to ~6 Mrad/h at a beam spot diameter, suitable for RD53A (3 cm)

X-ray cabinet

X-RAY SETUP

- The chip was operated in **direct powering mode:** Fixed V_{DDA} , variable V_{DDD}
- Data lane 0: DAQ, monitoring of the **serial data link status** (errors, sync losses)
- Data lane 1: Various data link parameters (amplitude, eye opening, jitter) were measured

TEMPERATURE CONTROL

- Temperature of the cooling plate set to -5 °C
- Monitored close to the chip: Fluctuation of $\pm 0.8~^{\circ}C$ during the campaign

Results: Power and I_{ref}

CURRENT CONSUMPTION

- Starting from 200 Mrad*, we enabled the clock to the complete pixel matrix
 - → Increased digital power, slope barely affected
 - → Slope for analog power changed

REFERENCE CURRENT

- RD53A uses a bandgap voltage reference and an internal voltage divider to generate its main reference current
 - Nominal value of $I_{ref}=\mathbf{4}~\mu A$ was trimmed before the irradiation
- During the campaign, I_{ref} decreased by ~7.5%
 - Caused by the temperature-stable, but radiation sensitive divider (poly silicon + diffusion resistor)
 - For RD53B, external resistors will be used instead

Results: Digital

DIGITAL SCANS – SHMOO PLOTS

- Question: How large are the margins in terms of digital supply voltage and reference frequency?
- Method: Digital scans within a parameter space $(V_{DDD}: 0.8 1.3 \ V, f: 140 180 \ MHz)$ with 100 injections into every pixel \rightarrow Expectation: 7.68e6 hits

DIGITAL SCANS - SHMOO PLOTS

- With increasing dose
 - fewer combinations of operating condition are working
 - the margin decreases

DIGITAL SCANS – SHMOO PLOTS

The digital logic is supposed to work at 0.9 V after 200 Mrad (according to similations)

DIGITAL SCANS - SHMOO PLOTS

- Additional scan introduced with different reset conditions
- POR is more reliable, when the chip is first powered (and reset) at 1.2 V, before lowering V_{DDD}

POWER-ON RESET

- The POR circuit was **designed using the analog corner** ($V_{min} = 1.08 \ V$)
- With $V_{DDD} \leq 1 V$, the reset signal is only a short pulse, which is **insufficient to reset the logic reliably**

COMMAND/DATA PHASE SHIFT

- In CDR bypass mode, the phase between command clock and data is critical
- Measurement with a controllable external two channel clock generator after the campaign: Ch1: FPGA (CMD data), Ch2: CMD clock to the chip. Phase between channels was varied
- The setup- and hold timing changes with temperature and dose
 - **Hold time** (distance between data transition and clock edge) **increases** by $\sim 0.5^{\circ}/^{\circ}C = 8.7 \ ps/^{\circ}C$
 - The critical phase region increases from ~20° at 10 Mrad to ~45° at 600 Mrad

PLL: VCO TUNING RANGE

- In the default operation mode of the chip, a **CDR/PLL block** locks to the CMD clock and provides several clocks, derived from the internal VCO
- Measurement of the VCO gain curve
 - V_{ctrl} is scanned from 25 mV to 1.2 V, while the frequency is measured
 - Compared to a non-irradiated chip, the VCO gain decreased and the frequency range shifted slightly

EYE DIAGRAMS

- Most interesting values from the eye diagrams
 - Time Interval Error: RMS of the total jitter (1)
 - Eye width(2), height (3): Define the eye opening, bit amplitude(4)
- Cross-coupling of SER_CLK can be seen on the data line: $\sim 50 \ mV_{pp}(4) \ \underline{\text{in bypass mode}} \text{no issue for the data link}$

Results: Analog Front Ends

THRESHOLD

NOISE

CONCLUSION

- RD53A 0x0C5B has been irradiated to 600 Mrad
- Observations:
 - No significant degradation of the cable driver and the VCO tuning range
 - **POR** is not reliable at $V_{DDD} < 1 \ V$ after 200 Mrad. Confirmed by simulation, to be improved in the next version.
 - I_{ref} decreases by ~7,5% \rightarrow Mitigation by usage of external precision resistors for RD53B
 - Operational temperature critical after irradiation (need to stay below ~-10 °C for stable operation)
- Future plans
 - Irradiation of a few samples to different TID
 - Non-uniform irradiation
 - SEU/SET studies

THANK YOU

Backup

BACKUP - READOUT SYSTEM

Two readout systems for testing have been developed within the RD53 collaboration

- YARR: Comprehensive PCIe-based readout system with software framework written in C
- BDAQ53: Easy to use characterization and verification environment based on Python
- Main purpose: Evaluation of the RD53A prototype chips:
 - Electrical characterization (single chip)
 - test beam performance measurements
 - multi-chip (module) tests
 - wafer-level tests with a probe station
- BDAQ53 was used for this campaign: Ease of use
 - Single board, no additional adapters
 - Ethernet interface
 - No specific PC needed, even works with a Laptop
 - Python based software: Fast debugging
 - Alternative HW platforms supported: Xilinx KC705, USBPix3

BDAQ53 setup with RD53A Single Chip Card

BACKUP - BDAQ53 FIRMWARE

- Several firmware modules are instantiated from the Basil firmware library (FIFO, GPIO, I²C etc.)
- "Basil Bus"
 - Simple 32-bit wide bus for internal control signals
 - Firmware modules are addressed
 - Bus master: Interface to the SiTCP Ethernet IP core (1Gbit/s)

AXI4-Stream

- Aurora IP core from Xilinx (GTX transceivers)Wrapper translates to the generic
- FIFO-style interface of SiTCP
- Command encoder
 - Programmable sequencer
 - Arbitration of triggers and idle/sync patterns
- Future plans
 - 10 Gbit/s Ethernet for SFP+
 - DDR3 memory FIFO

