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Introduction - Motivation

Requirements for CLIC vertex 
detector:
●  Single point resolution ~3um
●  Silicon detector thickness 50-100um
●  Time resolution ~10ns

Prototype SOI detector structures shown 
in this talk were designed as generic R&D, 
not yet for CLIC specifications

CLIC – Compact Linear Collider
Linear e+e- Collider with sqrt(s) up to 3 TeV

CLIC accelerator:
● electron-positron collider
● tunnel length: 11.4 m - 50.1 m
● center-of-mass: 360 GeV - 3 TeV
● train length: 156  ns
● BX: 312 with 0.5 ns repetition
● train repetition: 50 Hz
● two drive-beam acceleration 
● "Higgs factory", top quark    
● physics, BSM, SUSY



Introduction – SOI CMOS process

Main advantages of monolithic detector in SOI Lapis technology for 
imaging/tracking :
● Separate thin 200nm SOI CMOS and thick sensor bulk 
● Full CMOS process available
● Sensor can be fully depleted and thinned down to ~50um
● High resistivity (up to >10 kΩcm) n-type and p-type bulk
● Double SOI version available (better shielding, helpful for radiation hardness) 

SOI structure Double SOI structure
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Chip overview

● Two pixel types: 
● source follower front-end (SF)
● charge-preamplifier front-end with two sensing 

diode sizes (CPAsmall,CPAlarge)
● In total 16 x 36 pixel in matrix
● 30 um x 30 um pixel size
● Rolling shutter readout 
● Two wafer types:

● FZ-n 500 um thickness  
● DSOI-p 300 um thickness

http://www.agh.edu.pl/
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Pixel archirecture
SOURCE FOLLOWERS

      CHARGE PRE-AMP

SOURCE FOLLOWER front-end:
● source follower input stage
● Correlated Double Sampling (CDS)
● 16x16 um sensor implant, 30x30 um pixel size
● dedicated for FZ-n wafer
● sensitive for detector capacitance:
● simple archirecture benefits in reducing sources 

of electronic noise

CHARGE PREAMPLIFIER front-end:
● telescopic amplifier with additional current 

source in input stage, 
● "T-shape" capacitor feedback structure to 

decrease capacitance(~6 fF) / increase gain 
● CDS
● sensor implant 5x5um, 29x29um, pixel size 

30x30um

http://www.agh.edu.pl/
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LAB test: Noise performance

● measurements with Am-241 source
● gain and noise calculated from Am,Np,Cu X-ray lines

SOURCE FOLLOWER (SF) CHARGE PRE-AMP (CPAlarge)

DSOI-p FZ-n

CPAlarge 128 e- 131e-

CPAsmall 98 e- 148 e-

Source 
follower

321 e- 113 e-



DAQ setup:
● Main readout PCB + mezzanine board with prototype SOI chips
● FPGA – PC → Ethernet
● DAQ Software – ROOT 6

Testbeam:
- SPS H6 beam line at CERN with  Timepix-3 based CLICdp  telescope
- CLICdp test-beam with 120 GeV pion beam 

Testbeam setup
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Signal to noise ratio
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FZ-n DSOI-p

FZ-n:
● Fully depleted around 70V (corresponding resistivity ~12.3 kOhm cm)
● Best SNR for source followers (SF): above 350 for full depletion
● Good performance also for CPA matrices (CPAsmall, CPAlarge) with good SNR (~250, ~200)
● Even at very low back bias voltages the SNR is high  

DSOI-p:
● Not fully depleted, bias only up to ~70V (leackage of unknown source prevented higher bias)
● SNR in the range 20-100
● Charge preamplifier performance better than source follower (due to detector capacitance)

DSOI-pFZ-n



Detector efficiency
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Efficiency = SOI events / all telescope tracks

● For FZ-n at full depletion
➢ Source followers →97.98% (average)
➢ Charge preamplifiers → 96.80% (average)
➢ Within pixel efficiency looks uniform
➢ Unefficiency is caused most probably by the dead 

time in the rolling shutter readout (reset phase) 
● Similar results are obtained for DSOI-p matrix at high 

enough sensor bias voltage 

SF in-pixel efficiency

FZ-n
130V

SF CPAlarge

CPAsmall

Efficiency map for FZ-n



Cluster reconstruction
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To check the sensitivity of spatial resolution to main cluster parameters like size, shape or SNR, 
analyses are done with several methods to find cluster. Two thresholds are used: high threshold – 
th

seed
 (red) and lower one – th

neigh
 (yellow). Different values of these theresholds are tried.  

11

● 2TM - 2 thresholds method
● 2HLM - 2 highest lines (rows) 

method
● 9PM - 9 pixel method (only th

seed
) 

● 4PM - 4 pixel method (only th
seed

) 

● CROS - cross method (only th
seed

) 

\

FZ-n
130V

DSOI-p
70V



Spatial resolution
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● Spatial resolution is calculated fitting gauss curve to the 
residuum distribution (difference between telescope and 
SOI position)

● Calculated raw SOI detector resolution is corrected for 
the telescope resolution (2um)

● Since the residuum distribution contains non-gaussian 
tail different fitting approaches may be used

● Examplary plots for SF matrix of FZ-n wafer at 130V bias 
are shown here for:
➢ Single gauss fit to 95.5% of statistics
➢ Fit of Sum of 2 gausses to the whole statistics 

● For the above example, after telescope correction, one 
gets
➢ 2.2um for single gauss
➢ 1.7um for „inner” gauss sigma in 2-gauss fit
➢ 5.2um taking RMS without fitting

● In this work we show the results of single gauss 
fitting to 95.5% of the statistics, as was proposed by 
CLICdp collaboration

● Analyses are ongoing, fitting procedure can still be 
modified...

After telescope correction σ=2.23um

Corrected „inner” σ=1.67um



Spatial resolution - COG

13

First analyses of spatial resolution were done with Center Of Gravity (COG) method

FZ-n
130V  
CROS

DSOI-p
70V  
CROS

For FZ-n wafer ~3.5um, ~4.5um are obtained for „X”, „Y” direction at full depletion
For DSOI-p spatial resolution is worse than 6.5um in both directions



Multi-pixel eta correction for „X”
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Distribution of COG hit x-position 
projected on pixel pitch 

Cumulative function 
of distribution on left 

Distribution of ETA-corrected hit 
x-position projected on pixel pitch 

● Due to diffusion in sensor the charge sharing between neighbouring pixels is not linear 
● Eta correction of hit position is proposed, projecting the COG hit position onto pixel pitch 

and assuming that the distribution of the projected hit position ξ
COG

 should be uniform 
● After the correction, using eta cumulative function (middle plot), the initial projected hit 

position histogram (left plot) becomes uniform (right plot)
● Typically, one would expect the initial hit position histogram (left plot) to be symmetrical in 

respect to the center of pixel (15um). This is not the case for „X” direction
● Most probable explanation, confirmed by the inspection of detector layout, is the existence 

of parasitic crosstalk to „left” neighbour

FZ-n



Multi-pixel eta correction for „Y”
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● Eta correction in „Y” direction is done in exactly the same was as in „X” direction
➢ Using cumulative function (middle plot) a uniform distribution of the projected hit position 

ξ
COG

 (right plot) is obtained from the initial distribution of the projected hit position ξ
COG

 

(left plot)
● In „Y” direction the initial distribution of the projected hit position ξ

COG
 is symmetrical about 

the pixel center, as one would expect from the symmetrical layout of the pixel

Distribution of COG hit y-position 
projected on pixel pitch 

Cumulative function 
of distribution on left 

Distribution of ETA-corrected hit 
y-position projected on pixel pitch 

FZ-n



Spatial resolution - eta vs COG
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COG – dashed
eta - solid

FZ-n
130V  
2TM

FZ-n
130V  
CROS

● For „Y” results with eta are definitely better, for „X” they are not, probably due to crosstalk effect. 
● SF matrix (highest SNR) gives the best resolution.



Spatial resolution – clustering methods
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Trends similar for all methods, absolute values  may differ significantly, the best resolution not 
always obtained by the same method, although CROS is a good candidate. Needs more studies...

FZ-n 
SF

DSOI-p 
SF



CLIPS detector for CLIC

18

Main features
● targeting CLIC vertex detector 

resolutions specifications (time: 
10ns, spatial: 3um)

● 3 matrices, each 64x64
● 20x20 um2 pixel pitch
● Anaougue information about 

time and amplitude stored in 
capacitors on each pixel → no 
need for fast clock distribution

● snapshot readout between 
bunch trains

● analogue multiplexing to 
external ADC

● external readout control 
possible

Prototype of CLIPS chip already designed and fabricated. Test setup needs to be developed...



Summary

● Prototype SOI monolithic pixel structures have been developed and studied 
in lab measurements and on beam line
● Good efficiency >97% has been measured
● Measurements show that for 30x30 um2 pixel detector the spatial resolution 
of 2-2.5 um can be achieved 
● More analyses still needed for better understanding of clustering methods, 
etc...
● New, CLICdp dedicated, prototype pixel detector – CLIPS has been 
developed and fabricated 

Thank You for Attention
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Back-up
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….



Spatial resolution eta vs COG
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COG – dashed
eta - solid

DSOI-p
70V  
2TM

DSOI-p
70V  
CROS

● For „Y” eta definitely better. 



CLIPS
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….

● Active time is adjustable (from 100 ns – 300 us)
● Timing resolution depends on active time
● Simulations done for 1 us active width
● Nonlinearities below 0.5% (below 5 ns)

● After sensor thinning to 100 um expect signal for MIP is 
around 1fC

● Linear dynamic range up to ~1fC
● Above 1fC signal starts to saturate



Spatial resolution FZ-n prot1vs 3 SF
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Spatial resolution FZ-n prot1vs 3 CPAsma
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