X-ray imaging with high-Z sensors for the ESRF-EBS Upgrade

> Stergios Tsigaridas PIXEL2018, Taipei December 13, 2018

The European Synchrotron

European Synchrotron Radiation Facility - ESRF

- ESRF is a 3rd generation synchrotron located in Grenoble/France
- 22 partner nations (13 Members states and 9 Scientific Associates)
- Offering 44 beamlines in total
- More than 5000 individual user visits per year

ESRF EBS Upgrade Programme

- Use same tunnel new storage ring
- Brilliance and coherence will be increased by a factor 100
- Upgrade programme for beam instrumentation and detectors

e ⁻ beam properties	Today	EBS
Energy (GeV)	6.04	6
Multi-bunch current (mA)	200	200
Circumference (m)	844.39	843.98
Horizontal emittance (pm · mrad)	4000	140
Vertical emittance (pm · mrad)	4	5

Ref: ESRF Upgrade Phase II (Technical Design Study)

Hybrid pixel detector developement at ESRF

- Need for efficient detectors at moderate and high x-ray energies (30-100 keV)
- Research programme focusing on high-Z sensors for direct detection
- Photon counting or charge integrating

Property	Si	GaAs.	CdTe	CZT
Z (average) Density (g cm ⁻³) Energy gap (eV) Intr. carrier conc. (cm ⁻³)	$\begin{array}{c} 14 \\ 2.33 \\ 1.12 \\ \sim 10^{10} \\ 3.62 \end{array}$	$325.321.422 \cdot 10^{6}$	50 5.85 1.44 $\sim 10^7$	49.1 5.81 ≥1.6 ~ 10 ⁷

Hybrid pixel detectors for photon counting

- Medipix/Timepix family of chips
- = 256 \times 256 pixels, 55 μm pitch
- Total area of 2 cm²

- Single or multi-chip modules
- Sensor is bump bonded to chip
- Wire bonds to chip carrier board

Table : Portfolio of high-Z sensors

Sensor	Thickn. (mm)	Pixel (μm)	Contact (type)	Vendor
CdTe	1	55	Ohmic	Acrorad
GaAs	0.5	55	Ohmic	Tomsk
CZT	2	55	Schottlar	Dadlan
CZT	2	110	Schollky Redien	

Maxipix readout system

Ref: C. Ponchut et al. 2011 JINST 6 C01069

- Developed by ESRF (Medipix2/Timepix)
- 1.4 kHz maximum frame rate
- $2 \cdot 10^5$ counts/pixel maximum count rate
- 0.29 ms dead time at 100 MHz clock
- \blacksquare Minimum threshold \sim 4 keV
- 11810 pixel counter depth

How to choose "the sensor" (?)

Apply a common characterization procedure

Lab/X-ray generator

- □ Wide filtered X-ray beam
- Flat field images, count rate/stability tests
- Imaging performance and spatial resolution
- Charge collection efficiency tests

Synchrotron beamline

- $\hfill\square$ Micro-focused (5-10 $\mu m)$ monochromatic beam
- Sub-micron precision translation stages
- □ Spatial characteristics of the sensor (resolution, distortions)
- Single pixel spectra

Leakage current vs bias voltage

- Detector 1.5 m away from source
- Ramp up voltage and X-rays on

- \blacksquare Ag Anode/100 μm filter (\sim 22 keV)
- Generator settings (35 kV/25 mA)

Leakage current stability

- Detector 1.5 m away from source
- Ramp up voltage and X-rays on

- Ag Anode/100 μm filter (\sim 22 keV)
- Generator settings (35 kV/25 mA)

Flat field images (1 s exposure)

- Information about the quality of sensor/bump bonding/etc
- Tiny dots correspond to masked or unconnected pixels

- Defects appear with the form of lines or blobs
- How does this affect the performance??

ESRF

About 3h later...

Page 12 | December 13, 2018 | Stergios Tsigaridas

Imaging performance and spatial characteristics

Modulation tranfer function (MTF) - presampling

- Make use of slanted edge method
- Edge/line spread functions (ESF/LSF)

• $LSF(x) = \frac{d}{dx} \{ ESF(x) \}$

•
$$MTF(u) = |\mathcal{F} \{ LSF(x) \}|$$

The European Synchrotron

Detective quantum efficiency (DQE)

- Measure of the image quality
- $DQE = \frac{MTF^2}{q \cdot NNPS}$

- *q*: Incident flux per mm²
- NNPS: Normalized Noise Power Spectrum

Page 15 | December 13, 2018 | Stergios Tsigaridas

Mesh scans with micro-focused beam

- Be compound refractive lenses
- Beam spot << pixel size</p>
- Precise mapping of a sensor area
- Effective pixel shape

Mesh scans with micro-focused beam

- Be compound refractive lenses
- Beam spot << pixel size</p>
- Precise mapping of a sensor area
- Effective pixel shape

The European Synchrotron

Mesh scans with micro-focused beam

- Be compound refractive lenses
- Beam spot << pixel size</p>
- Precise mapping of a sensor area
- Effective pixel shape

Spation distortions

- Align beam on a visible defect
- Mesh scan surrounding pixels

- Set threshold close to minimum value
- Saturation when beam in inter-pixel area

Spation distortions

Align beam on a visible defect

Set threshold close to minimum value

Mesh scan surrounding pixels

Saturation when beam in inter-pixel area

Spation distortions

- Align beam on a visible defect
- Mesh scan surrounding pixels

- Set threshold close to minimum value
- Saturation when beam in inter-pixel area

Ref: C. Ponchut et al., 2017 JINST 12 C12023

Threshold scans and single pixel spectra

- Align beam at the center of a pixel
- Vary the discriminator threshold
- Measure the number of counts for each threshold step
- The derivative of the threshold scan gives the single pixel energy spectrum
- The peak should correspond with the beam energy

The European Synchrotron

Threshold scans and single pixel spectra

- Align beam at the center of a pixel
- Vary the discriminator threshold
- Measure the number of counts for each threshold step
- The derivative of the threshold scan gives the single pixel energy spectrum
- The peak should correspond with the beam energy

Single pixel spectra of a 3×3 area

- CZT (2 mm, 55 µm)
- Crosscheck for calibration

1	2	3
4	5	6
7	8	9

- Shutdown for the EBS Upgrade (since Monday)
- Characterization of high-Z sensors at ESRF
- Preliminary results Analysis ongoing
- More tests planned at higher energies and with more sensors
- The choice of "the sensor" would be a compromise

Shutdown for the EBS Upgrade (since Monday)

- Characterization of high-Z sensors at ESRF
- Preliminary results Analysis ongoing
- More tests planned at higher energies and with more sensors
- The choice of "the sensor" would be a compromise

Backup

TIME

Backup

- Over-sample image
- Rotate
- Average slices over the edge to obtain ESF
- Differentiate to obtain LSF
- The amplitude of Fourier transform gives the MTF
 MTF(u)=|DFT_{1D}{LSF(x)}|

Backup

- Noise only image
 n_i(x,y)=I_i(x,y)-Ī(x,y)
- Noise Power Spectrum $NPS_{2D}(u,v) = \frac{d_p^2}{N_X N_y} \frac{1}{N} \sum_{i=1}^N |DFT_{2D}\{n_i(x,y)\}|^2$
- Normalised Noise Power Spectrum $NNPS_{2D}(u,v) = \frac{NPS(u,v)}{\langle \text{meanpixelsignal} \rangle^2}$
- Averaging $NNPS_{2D}(u,v) \xrightarrow{Averaging} NNPS_{1D}(u)$

