

The Monopix chips: Depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade

Ivan Caicedo*

On behalf of the LF-/TJ- Monopix design and measurement teams: **BONN, CERN, CPPM, CEA-IRFU**

* caicedo@physik.uni-bonn.de

THE ATLAS INNER TRACKER UPGRADE FOR THE HL-LHC

The ATLAS experiment will upgrade its inner tracker system for the HL-LHC

Max. instantaneous luminosity: of 7.5 x 10³⁴ cm⁻² s⁻¹ (~200 interactions per bunch crossing)

Radiation-hard hybrid pixel sensors will remain as the baseline (RD-53):

- Significant material budget (3% Xo per layer). - Complex (and expensive) module production.

A complementary option for the <u>outer layer</u>?

Depleted monolithic sensors in CMOS technology

	Inner layer	Outer Layer	
Occupancy	30 MHz/mm ²	1 MHz/mm ²	Fast R/O
NIEL	10 ¹⁶ n _{eq} /cm ²	$10^{15} n_{eq}^{2} / cm^{2}$	+ architecture w
TID	1 Grad	80 Mrad	23 113 precisio
Area	O(1m²)	O(10m²)	

ATLAS ITK Pixel Lavout (CERN-LHCC-2017-021 / ATLAS-TDR-030)

R [mm]

PIXEL 2018 | caicedo@physik.uni-bonn.de

THE MONOPIX CHIPS

DMAPS with an integrated column-drain read-out architecture

(fast synchronous read-out architecture)

LF-MONOPIX01 (March 2017)

Large fill-factor design in LFoundry 150 nm **CMOS** technology

T. Wang, et al. DOI: 10.1088/1748-0221/12/01/C01039

P. Rymaszewski et al. DOI: http://doi.org/10.22323/1.313.0045

T. Hirono, et al. DOI: 10.1016/j.nima.2018.10.059

TJ-MONOPIX01 (February 2018)

T. Wang, et al. DOI: 10.1088/1748-0221/13/03/C03039 K. Moustakas, et al. DOI: 10.1016/j.nima.2018.09.100

Small fill-factor design in Towerjazz 180 nm **CMOS** technology with a process modification

STREAM

2018 / 12 / 13

PIXEL 2018 | caicedo@physik.uni-bonn.de

COLUMN-DRAIN R/O ARCHITECTURE

Why? Sufficient rate capability with affordable in-pixel logic

density for CMOS pixels

STREAM

Column-drain has

DEPLETED MONOLITHIC ACTIVE PIXEL SENSORS (DMAPS)

DMAPS in CMOS technology are suitable candidates for the outmost pixel layers

Commercial process, no hybridization (Reduced material budget and costs), considerable depleted regions in high-resistive substrates, fast charge collection by drift, multiple wells for shielding, scalable.

Two approaches:

"Large Fill Factor" Large collecting well containing all the electronics

PROS: Short drift distances, strong E-field (Rad-hard) CONS: Large sensor capacitance (Compromise on timing and noise), higher analog power.

"Small Fill Factor" Small collecting well, separate from the electronics

PROS: Very small sensor capacitance CONS: Long drift distances, compromised rad-hardness

STREAM

5

LF-MONOPIX01

- Large fill-factor design in LF 150 nm CMOS technology
- High resistive substrate (>2 kOhm-cm)
- Large 50 x 250 μm² pixel array (129 x 36)
- Bunch-crossing clock frequency (40MHz clock)
- 40 MHz (up to **160MHz** by design) LVDS serial output
- Charge ADC sampling: 8-bit LE/TE time stamps (ToT)
- Power: 55 µW/pixel (~1.7W/cm²)

Radiation-hardness and sensor layout optimized in previous prototypes

Succesful design efforts for crosstalk mitigation

 \checkmark

Fast and low-power CSA and discriminator implementations

 \checkmark

STREAM

6

PIXEL LAYOUT IN LF-MONOPIX01

2018 / 12 / 13

BREAKDOWN AND DEPLETION

Most Probable Value for MIPs measured in LF-MONOPIX

25000

STREAM

PIXEL 2018 | caicedo@physik.uni-bonn.de

NOISE AND GAIN

STREAM

* Neutron irradiation in Lubljana (JSI),

TUNING OF THRESHOLD DISTRIBUTIONS

LEAKAGE CURRENT AND TOT RESPONSE

Leakage current **ToT response** 10^{-4} Charge [ke] proton(50 Mrad) 2 10 12 0 6 8 1E15neq/cm2 90 10⁻⁵ Leakage current[A/chip] 1E14neq/cm2 80 0neq/cm2 70 10⁻⁶ ToT [25ns] 60 10^{-7} 50 **Bias: -200V** Measured @-27.5°C 40 @ -27.5°C 10⁻⁸ 30 0neq/cm2 20 1E15neg/cm2 10 10 10^{-10} Ŏ.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 50 100 150 200 0 Injection [V] Bias voltage[V]

• Breakdown voltage still > 200V after 1 x 10¹⁵n_{eq}/cm² NIEL

ToT response not affected

TB WITH 2.5 GEV ELECTRONS: HIT EFFICIENCY

Non-irradiated

- Hit efficiency @ Noise occ. << 10⁻⁷, TH~1700e-(<10⁻⁷ @ 1400e-)
- 1% masked pixels from noise tuning (not broken).

- Neutron irradiated (1 x 10¹⁵n_{eq}/cm²)
 - Hit efficiency @ Noise occ. < 10⁻⁸, TH~1700e-
 - < 0.2% masked pixels from noise tuning.
 - Efficiency loss between pixels, as expected.

PIXEL 2018 | caicedo@physik.uni-bonn.de

TB WITH 180 GEV PIONS: IN-PIXEL EFFICIENCY

Deep N-well (Collecting electrode...) P-well (Inter-pixel region, isolation of electronics...) N-well (R/O electronics...)

5 µm*5 µm bins

TIMING PERFORMANCE (AT DEFAULT SETTINGS)

• >80% of events are within 2 bins after neutron irradiation up to $1 \times 10^{15} n_{eq}/cm^2$.

<u>**Remarkable</u>** for a C_d ~400fF and promising for new designs with smaller C_d (Optimized Fill-Factor).</u>

• There is still room for improvement:

Optimization of parameters (current of CSA, discriminator, etc.), higher bias voltage, back side process.

Measurements with thinned chips and higher resolution ongoing.

TJ-MONOPIX01

2 cm

112 Columns

STREAM

Pixel

224 |

PROCESS MODIFICATION IN TOWERJAZZ 180NM

BONN

STREAM

PIXEL 2018 | caicedo@physik.uni-bonn.de

PIXEL LAYOUT AND P-WELL COVERAGE

2018 / 12 / 13

PIXEL 2018 | caicedo@physik.uni-bonn.de

CALIBRATION OF THE INJECTION CIRCUIT

Calibration values are similar in "Top" and "Bottom", but different for unirradiated and irradiated samples:
Unirradiated: ~33e-/DAC
1x10¹⁵ Irradiated: ~42e-/DAC

Threshold (Rem-DPW) 600

THRESHOLD AND NOISE

- 8 Unirradiated 800 le15neq 500 of Pixel of Pixel Pixel le15neq 600 400 Low-TH ę # Norm-TH # 4 HL-MOT 300 Norm-TH 400 200 200 100 0 - 0 1000 20 250 750 1250 0 500 Threshold [e-] ENC [e-] **Unirradiated:** μ= 349e-, σ=34e-

1x10¹⁵ Irradiated: μ= 569e-, σ=66e-

ENC increased by ~10e- after $1 \times 10^{15} n_{eq} / cm^2$ (Probably due to TID bckg)

40

ENC (Rem-DPW)

- 10

8

6

4

2

0

80

of Pixe

#

Low-TH

* Neutron irradiation in Lubljana (JSI), samples annealed for 80 mins at 60°C

Unirradiated

le15neg

le15neg

Low-TH

60

IN-PIXEL EFFICIENCY (UNIRRADIATED)

2018 / 12 / 13

MEAN HIT EFFICIENCY VS DEEP P-WELL COVERAGE

• Lower efficiencies in Full DP-Well regions (Bottom) than in Removed DP-Well (Top) ones.

In MALTA

MEAN HIT EFFICIENCY AFTER IRRADIATION

(very similar front-end and pixel pitch)

---> Fixes to the TJ modified process in pixel corners to enhance E-Field (M. Munker, PIXEL 2018 / Talk 53)

TIMING PERFORMANCE

2018 / 12 / 13

CONCLUSIONS

Operational column-drain read-out on fully monolithic CMOS pixel detectors in both small and large fill factor designs on a large pixel matrix

		LF-MONOPIX01		TJ-MONOPIX01	
	DMAPS type	Large FF (150nm CMOS LFoundry)		Small FF (180nm CMOS, mod. Towerjazz)	
		Non-Irrad	10 ¹⁵ n _{eq} /cm ²	Non-Irrad	10 ¹⁵ n _{eq} /cm ²
	Signal MPV	~16ke- (@60V)	~5.6ke (@200V)	~1.6ke-	~1.4ke-
	ENC	~200±50e	~350±50e	~15±2e	~25±3e
	Threshold	>1400±100e	>1700e±130e	>350e±35e	>570e±65e
	Mean Effic.	99.6%	98.9%	97.1%	69.4%
(*) Still r	Hits in 50ns	98.7% (*)	83% (*)	93%	98%

WHAT'S NEXT?

- LF-MONOPIX02 (end 2019)
 - Next iteration with CSA and discriminators with the best performance.
 - Smaller pixel size (150x50) to reduce detector capacitance.
- TJ-MONOPIX02 (end 2019)
 - Pixel layout according to the best performing fix to the TJ modified process in miniMALTA.
 - Threshold tuning and reduction.
 - Optimize active area layout in pixels.
- CMOS-1 (mid-2020)

2018 / 12 / 13

RD-53 like, full size chip in a selected CMOS process and fill-factor approach.

Modified process with additional p-implant:

Modified process with gap in n-layer:

M. Munkers's presentation (PIXEL 2018 / Talk 53)

Thank you for your attention.

This research project received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Moreover, it has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Union's Horizon 2020 Research and Innovation Programme under grant agreement 675587-STREAM.

CMOS DEMONSTRATOR PROGRAM

A collaborative R&D effort within ATLAS focused on DMAPS prototypes with fast read-out architectures in different CMOS processes.

Previous iterations of these prototypes (passive sensors, or active ones with a first stage of the Front-End within the pixel) allowed to optimize the designs and improve radiation-hardness.

FROM LF-CPIX TO LF-MONOPIX

LF-MONOPIX01 (50 x 250 µm²)

Large fill factor design. C_d~ 400fF

Electronics are directly coupled to the collecting node through C_{pw}

- Special efforts on design to minimize cross-talk with digital signals

- Increase of minimum operational threshold

PROTOTYPE DEVELOPMENT LINE

DESIGN CHALLENGES

In Token propagation:

"Current steering logic"

-> Limit the current to avoid glitches

In Data R/O (LE/TE, address):

Differential lines + Source followers

-> Avoids current injection into the PW when switching from high to low

PREAMPLIFIERS AND DISCRIMINATORS

TOT RESPONSE AND CALIBRATION

NOISE AND GAIN

PIXEL 2018 | caicedo@physik.uni-bonn.de

UNTUNED THRESHOLD DISTRIBUTIONS

Untuned threshold dispersion for flavours with the V1 discriminator ~400-600 e- (plus 350-400 e- for those with integrated pixel R/O logic and the V2 discriminator)

NOISE OCCUPANCY AT LOW THRESHOLD

- Non-irradiated
 - Threshold: 1400 e-
 - Dispersion due to noise baseline tuning
 - Bias V: -200V
 - Cooled with dry ice.

- Neutron irradiated (1 x $10^{15}n_{eq}/cm^2$)
 - Threshold: 1700 e-
 - Bias V: -130V (due to technical issues)
 - Cooled with dry ice.

TEST BEAM CAMPAIGNS

- MIMOSA26 x 6

- Pixel size: 18.2 µm x 18.2µm
- 1152 µs/frame (rolling shutter)
- FE-I4 x 1
 - Pixel size: 250 µm x 50 µm
 - Timing resolution: 25ns (trig. by scintillator + TLU)

LF-MONOPIX (unirradiated and neutron-irradiated samples) exposed to MIPs at ELSA (2.5 GeV e-) and the H8 line of CERN's SPS (180 GeV pions)

TEST BEAM CAMPAIGNS

MONOPIX planes (unirradiated and neutron-irradiated samples) exposed to MIPs at ELSA (2.5 GeV e-) and the H8 line of CERN's SPS (180 GeV pions):

Measurements for different bias and threshold settings.

PIXEL 2018 | caicedo@physik.uni-bonn.de

TB@ELSA: IN-PIXEL EFFICIENCY

Deep N-well (Collecting electrode...) P-well (Inter-pixel region, isolation of electronics...) N-well (R/O electronics...)

Non-irradiated @ -200V: **Uniform efficiency**

STREAM

PIXEL 2018 | caicedo@physik.uni-bonn.de

Efficie

E-TCT MEASUREMENTS

* Neutron irradiation in Lubljana (JSI), samples annealed for 80 mins at 60°C

IMPROVEMENT AFTER BACKSIDE-PROCESS

* Neutron irradiation in Lubljana (JSI), samples annealed for 80 mins at 60°C

E-TCT measurement on LF test structures thinned and Backsideprocesssed to 200μm I. Mandić, RD50 workshop 2017

STREAM

300

0.4

- 0.37

0.34

/ / m 0.31

PMOS reset flavor gain map for different PWELL and PSUB bias voltages

TJ-MONOPIX01 GAIN

Gain of ~400 uV/e- (or larger) achieved under different bias schemes

20.0 -

12.0 -

8.0

5.0 -

1.6 -

-6

0

-3

-6

-3

PWELL voltage (V)

0.37

0.33

0.29

0.24

0.2

0

STREAM

Gain (mV/e-)

2018 / 12 / 13

DIFFERENCES DUE TO N-LAYER DOPING

• Mean efficiency larger for unirradiated W4 than for W12

CLUSTER SIZE FROM TEST BEAM (TJ-MONOPIX)

• The cluster size decreases after irradiation ---> Less charge sharing.

55-FE SPECTRA BEFORE AND AFTER IRRADIATION

• We observe charge sharing in the unirradiated sample, but not after irradiation (This observation agrees with the cluster size measurement during test beam)

