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Detecting neural events in the brain 

→ by an array of microelectrodes connected to 

an array of voltage amplifiers

→ like a large channel count oscilloscope with

10µV 20kHz resolution

1. Introduction: purpose
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Microwire Electrodes
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One microwire

electrode can record 

spiking activity from 

several neurons.
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Connecting microwires 

directly to a CMOS array 

allows for readout, 

digitization,

and multiplexing.

CMOS with Metal Contact Pads

Polished bundle

Recording from 

microwire electrodes



Press the bundles onto 

CMOS sensor
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(for alignment)

Bundle before Pressing

Bundle after Pressing
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Parameters Specifications

# of neural sensors 65,536 (256x256)

Full frame readout up to 39,000 

frames/s

on 32 analog outputs

Input referred 

noise

< 10 µVrms

(100 Hz- 20 kHz)

Voltage gain 100 – 800 V/V

Input impedance > 1 TΩ

Pixel pitch 50 mm

Henry/Argo 

sensor array 

Each pixel contains a high-gain, AC-

coupled, low-noise voltage amplifier
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→ overall pixel topology

→ design for compactness & for low noise

→ sense amplifier

→ pixel layout

→ measured performance in the array

2. Pixel design & performance
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Class-A amplifier 

with resistive self-biasing

1MegOhm

2…4pF

~1pF
Rfeedback

input

>1MΩ

output

Optimized for 1/f noise: single PMOSFET
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>1TΩ



Compact high value resistor
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PRO

• Compact: a diode-connected MOSFET + a 

MOSFET bias current source

• R=1/gm AC value hardly dependent on 

variability of the 1st MOSFET.  Dependent on 

the variability of the bias

• Can make extremely high R 

e.g. 1TΩ for IBIAS=25fA.

Needed to make very low RC time: 

1TΩ*100fC=0.1s

CON

• Needs an exclusive DC path for the IBIAS

• Only AC / small signal: << 100mV

• Not very linear

• Offset must be solved by AC coupling

• 1/f noise

𝑅 =
1

𝑔𝑚
=

𝑘𝑇

𝑞. 𝐼𝐵𝐼𝐴𝑆
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Actual Class-A amplifier
self-biasing with MOSFETs

- Gain = 10

- Rload = 1Mohm

- LNA+LPF input referred noise reaches 10µVRMS
R

>
1
T

Ω

output

input
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Actual Henry pixel topology
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Henry pixel

LNA1

LNA2
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Total pixel

gain 

and BW
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PSD + input noise histogram
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Henry pixel noise
input referred noise of one row of pixels
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→ recognize pulse shapes by matched filters

→ design of programmable filters

→ measured performance of prototypes

3. Future outlook
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Data reduction == recognize these shapes
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Pixel topology
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Programmable filters

Filters

• (resonant) bandpass filter

• (resonant) lowpass filter

• summator

Based on “ideal” R+C active filters

Actually IBIAS/gm+ C implementations

Continuous programmability of center/lowpass frequency, 

Q and gain, by programming IBIAS

Patent WO 2018/191725 pending 21



The OTA

• All transistors are minimum 

sized, or larger for mismatch

• Tail current can be adjusted

between <1fA and >1µA 

• Gain = between 100x and 200x
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Resonant bandpass filter (ideal)

Bandwidth = β

Quality factor = ω0/β
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Actual 

implementation

Pro: compact layout

Pro: easy to implement, pure MOS

Pro: input offset free

Pro: programmable by current

Con: one less degree of freedom 

(R2 absent): 

If Q must be large, the difference 

between the two currents becomes 

huge.

If Q is too small, the center gain H0 

becomes small as well.

10µm
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Sweeping both branch currents (simulation) 

 The two branch currents are 

adjusted to obtain the desired 

Q and resonant frequency 

 C=100fF
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BPF measurement vs simulation 
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2nd order low-pass filter
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5µm



LPF measurement vs simulation 
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 Pure MOSFET design

 All transistors have minimum size (except when 

needed for matching)

 Capacitors are 100fF MOS

 Input stages are PMOSFET source followers

 By adjusting the currents one can set the SF’s 

output impedance, hence the gain of each 

branch

-

+
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P2
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Multi-input differential summator



Summator layout

4 + inputs

4 - inputs
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Summator:

simulation vs.

measurement

Three different branches with different 

gains 0dB, -4.5dB, -9dB

Measurement compared with 

simulation
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4 Conclusions
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Conclusions

• Unprecedented massive parallel 256x256, 50µm pitch 

neural probe ROIC

• 10µVRMS @ 20kHz bandwidth

• Compact, in-pixel analog domain filters demonstrated

• Fully programmable

• Key design issue: mismatch of MOSFETs causes 

variability of frequency, gain and Q
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