caeleste

Presented at PIXEL2018 10-14 December 2018 Academia Sinica Taipei

Paradromics

Pixel array for 3-D integration with an intra-cortical electrode array.

<u>B.Dierickx¹</u>, P.Gao¹, A.Babaiefishani¹, S.Veijalainen¹, W.Wang¹, B.Luyssaert¹, A.Khan², R.Edgington², K.Sahasrabuddhe², M.Angle² ¹ Caeleste, Mechelen, Belgium

² Paradromics, San Jose, US

Outline

- Introduction, purpose
 ⇒Direct extracellular neuron signal sensing
 ⇒Our approach

 Pixel design & performance
 - \Rightarrow Sense amplifier design \Rightarrow Measured performance
 - \Rightarrow Measured performance
- 3. Future outlook
 - \Rightarrow In-pixel analog domain filtering \Rightarrow Prototype results

1. Introduction: purpose

Detecting neural events in the brain

- → by an array of microelectrodes connected to an array of voltage amplifiers
- $\rightarrow \quad \mbox{like a large channel count oscilloscope with} \\ 10 \mu V \ 20 \ \mbox{Hz resolution}$

Microwire Electrode

One microwire electrode can record spiking activity from several neurons.

Recording from microwire electrodes

Connecting microwires directly to a CMOS array allows for readout, digitization, and multiplexing.

500 um

Henry/Argo sensor array

output

colum

Parameters	Specifications
# of neural sensors	65,536 (256x256)
Full frame readout	up to 39,000 frames/s on 32 analog outputs
Input referred noise	< 10 µVrms (100 Hz- 20 kHz)
Voltage gain	100 – 800 V/V
Input impedance	> 1 TΩ
Pixel pitch	50 mm

Henry

2. Pixel design & performance

- \rightarrow overall pixel topology
- \rightarrow design for compactness & for low noise
- \rightarrow sense amplifier
- \rightarrow pixel layout
- \rightarrow measured performance in the array

Compact high value resistor

aeleste Deste Paradromics

PRO

- Compact: a diode-connected MOSFET + a MOSFET bias current source
- R=1/g_m AC value hardly dependent on variability of the 1st MOSFET. Dependent on the variability of the bias
- Can make extremely high R e.g. 1TΩ for I_{BIAS}=25fA. Needed to make very low RC time: 1TΩ*100fC=0.1s

CON

- Needs an exclusive DC path for the $\mathrm{I}_{\mathrm{BIAS}}$
- Only AC / small signal: << 100mV
- Not very linear
- Offset must be solved by AC coupling
- 1/f noise

Henry pixel

caeleste Goo Paradromics

15

PSD + input noise histogram

caeleste Goo Paradromics

Henry pixel noise input referred noise of one row of pixels

3. Future outlook

- \rightarrow recognize pulse shapes by matched filters
- \rightarrow design of programmable filters
- \rightarrow measured performance of prototypes

Pixel topology

Programmable filters

Filters

- (resonant) bandpass filter
- (resonant) lowpass filter
- summator

Based on "ideal" R+C active filters Actually I_{BIAS}/g_m + C implementations

Continuous programmability of center/lowpass frequency, Q and gain, by programming I_{BIAS} Patent WO 2018/191725 pending

- All transistors are minimum sized, or larger for mismatch
- Tail current can be adjusted between <1fA and >1µA
- Gain = between 100x and 200x

caeleste

Paradromics

Resonant bandpass filter (ideal)

Bandwidth = β Quality factor = ω_0/β

Actual implementation

Pro: compact layout
Pro: easy to implement, pure MOS
Pro: input offset free
Pro: programmable by current
Con: one less degree of freedom
(R2 absent):

If Q must be large, the difference between the two currents becomes huge.

If Q is too small, the center gain H0 becomes small as well.

Sweeping both branch currents (simulation)

 The two branch currents are adjusted to obtain the desired Q and resonant frequency

• C=100fF

BPF measurement vs simulation

caeleste

Paradromics

LPF measurement vs simulation

LPF: Monte Carlo vs Measurement

Multi-input differential summator

Vout

- All transistors have minimum size (except when needed for matching)
- Capacitors are 100fF MOS
- Input stages are PMOSFET source followers
- By adjusting the currents one can set the SF's output impedance, hence the gain of each branch 29

Summator layout 4 + inputs 4 - inputs

Summator: simulation vs. measurement

Three different branches with different gains 0dB, -4.5dB, -9dB

Measurement compared with simulation

4 Conclusions

Conclusions

- Unprecedented massive parallel 256x256, 50µm pitch neural probe ROIC
- $10\mu V_{RMS}$ @ 20kHz bandwidth

- Compact, in-pixel analog domain filters demonstrated
- Fully programmable
- Key design issue: mismatch of MOSFETs causes variability of frequency, gain and Q

Thank you!

Projects sponsored by

DARPA NESD Program Contract Number: N66001-17-4005 PI: Angle

National Institutes of Health SBIR/STTR Grant Number: 1 R43 MH110287-01 Co-PIs: Angle and Melosh