

Pixel detector R&D for the Compact Linear Collider (CLIC)

Mathieu Benoit, **University of Geneva** on behalf of the CLICdp Collaboration

The Compact Linear Collider

- Proposed linear collider with two-beam acceleration
 - e+ e- collisions
 - Achieves field gradients of ~100 MV/m
 - Center of mass energy stages: 380 GeV → 3 TeV
 - Physics goals: precision SM Higgs, Top and BSM physics

Bunch train

Beam structure:

156 ns

Bunch train

Beam structure:

0.5 ns

Trains of 312 bunches, 50Hz rate Spacing between bunches: 0.5ns

For the vertex and tracking detector:

50 Hz trains, Low radiation damage

High Precision physics measurements

Physics goals: precision SM Higgs, Top and BSM physics

PIXEL2018

High occupancy and pile-up Large background from $\gamma \gamma \rightarrow$ hadrons and incoherent pairs

- Low Power consumption
 50mW/cm² target in the vertex detector
 - air-flow cooling
 - Power-pulsing
- Triggerless readout

- **Low Mass** 0.2% X₀ per vertex layer
- High Single point resolution
 - Vertex : σ_{SP} ~ 3μm
 - Tracker : $\sigma_{SP} \sim 7 \mu m$
- **Precise time stamping** ~ 5ns
 - Background reduction

The CLIC vertex and tracking detector

A light weight vertex detector

- **Pixel size** : 25 x 25 μ m², σ_{SP} ~ 3 μ m
- **Timing resolution**: < 5 ns
- Material: 0.2 % X₀ / layer
- Moderate radiation exposure :

NIEL: $< 10^{11} n_{eq} / cm^2 / y$

TID: < 1 kGy / year

A large area tracker (140m²)

- Pixel size : 50 μm x O(mm) , σ_{SP} ~ 7μm
- Timing resolution : < 5 ns
- Material: 1-2 % X₀ / layer
- ~140m² of instrumented surface!

Vertex and tracking R&D cycles

Tools: The CLICdp Timepix3 Telescope and Caribou readout

The CLICdp Timepix3 telescope

- 7 x Timepix3 telescope planes
- Continuous readout
- ~1.2ns time resolution on tracks
- ~2 μm resolution at the DUT
- Flexible mechanics with rotation stages for angle study

The CaRIBOu universal readout framework

- Multi-chip modular r/o framework
- Stand-alone system based on Zynq SoC running YOCTO Linux
- Peary generic DAQ software
- Generic CaR board for powering and monitoring of DUT
- Implementation for CLICPix, CCPDs, ATLASPix, FEI4, H35DEMO and more ...

Tools : Allpix²

CERN.CH/allpix-squared

- A **Modular, Generic** Simulation Framework for pixelated Detectors
 - Generic simulation of pixel, strip detectors
 - Simple text base description of the geometry, simulation parameters
 - Charge transport and TCAD Electric Field import facilities
 - Visualisation and digitisation
 - Output in popular formats (EUDET,PROTEUS, Corryvreckan, etc..)
 - · Provided pre-compiled, via CVMFS, Docker
 - Continuous integration and unit test

CLIC Vertex and tracker technologies

Hybrid planar sensors

The CLICPix2 ASIC

- Timepix/Medipix chip family
- 65nm CMOS Technology
- 128x128 pixels, **25x25** μm²
- 5 bit TOT and 8 bit TOA for each pixels
- Shutter based readout with data compression
- Power Pulsing of matrix and readout block

Hybridization and testing

- FBK and Advacam Active edge sensors produced with CLICPix2 footprint
- Bumping performed by IZM using SnAg bumps and handle wafers -> Challenging!
- Best assemblies with <0.5% of unresponsive or disconnected bumps
- Test beam characterization ongoing

See A. Nürnberg 2016 JINST 11 C11039 for testbeam results on CLICPix

Capacitively-Coupled Pixel Detectors (CCPD)

(CCPDv3)C3PD+CLICPix(1)2

- 2 sensors, CCPDv3 and CLIC CCPD (C3PD) were designed in ams aH18 HV-CMOS technology
 - (64x64) 128x128, 25x25 μm² pixels
 - Substrate resistivity from 20 to 200 Ωcm
- First amplification layers integrated in sensors to provide large signal at output
- I²C 2-wire slow-control interface (C3PD)
- Coupling with ASIC done through a very thin layer of glue forming a capacitor (Low mass!)
 - Glueing method developed to using flip-chip assembly to acheive down to 100 nm glue layers
 - Fast prototyping method wrt planar sensors

Nucl. Instrum. Methods Phys. Res., A 823 (2016) 1-8 PhD Thesis M. Buckland CERN-THESIS-2018-114 I. Kremastiotis 2017 JINST 12 C12030 M Vicente et al., CLICdp-Note-2017-003

Also demonstrated on large (2x2 cm²) area: 2018 JINST 13 P12009

Capacitively-Coupled Pixel Detectors (CCPD)

Tracking performance and energy resolution (C3PD)

Tracking performance versus track angle of incidence (CCPDv3)

CERN-THESIS-2018-114

Small-Fill factor CMOS sensors

CMOS electronics integrated in **p-well separated from** collection electrode:

- Minimisation of diode size
- Minimisation of sensor capacitance down to ~ fF (large S/N)
- Process modifications to achieve full lateral depletion (W. Snoeys et. al)
- Further modifications proposed to improve timing and radiation hardness, see <u>Monday presentation</u> by M. Munker

Investigator analogue test-chip:

- Analogue test-chip developed for ALICE ITS upgrade, produced in 180 nm CMOS imaging process
- Various pixel layouts implemented in different pixel layouts, electrode to pwell spacings

Test-beam results for both process variants:

- Spatial resolution ~ 7 μm for threshold values of ~400e
- Fully efficient operation to threshold values below ~400e
- Timing resolution ~ 6 ns (limited by readout)

PhD Thesis M. Munker CERN-THESIS-2018-202

Small-Fill factor CMOS sensors: CLICTD

Promising results of 180 nm HR CMOS imaging process trigger design of fully monolithic CLIC tracker chip:

- Super-pixel segmented in high granular collection diodes to maintain fast charge collection while reducing digital logic
- Super pixel size of 30 μm x 300 μm
- Diode size of **30 μm x 37.5 μm**

Diode discriminator outputs combined in 'OR' gate:

- 8-bit ToA and 5-bit ToT measurements
- Storage of hit-pattern
- 100 MHz clock for 10 ns time binning

Data In **Enable Digital** Test Pulse --- N front-ends --counter **Digital Test** Pulse bit [0] ToT counter + Sync Shutter Mask[N-1] bit [N-1] Flag Data Out,

Different operation modes:

- 8 bits time stamping information (ToA) + 5 bits energy information (ToT)
- 13 bits time stamping information (ToA)
- 13 bits photon counting (number hits that are above threshold)

Design completed, UVM Verification ongoing

12 PIXEL2018 13/12/

Large Fill-Factor CMOS sensors

Implementation of fully **monolithic** sensors in ams aH18 process using high-resistivity wafers

- 180nm HV-CMOS Engineering run on 20-200 Ω cm substrate
- Thinned down to 60 μm
- 130x40 μm² pixels, 25x400 pixels
- 6 bit TOT and 10 bit TOA (up to 16 ns)
- Uniform breakdown across wafers at 60-85V
- Threshold down to 600e, 120e dispersion
- Full length column sensor (1.9cm)
- **Trigger-less** readout
- Serializer, PLL, High-Speed data transmission (1.25Gbps, aurora 8b/10b)
- Initially design for ATLAS, Radiation hard up to >1x10¹⁵n_{ea}/cm², 100MRad
- Close to CLIC Requirements

I. Peric et al., A high-voltage pixel sensor for the ATLAS upgrade, Nucl. Instrum. Meth. (2018), in press, DOI: 10.1016/j.nima.2018.06.060. Large Fill-Factor CMOS sensors

- ATLASPix was tested in beam at FNAL, CERN SPS using the FEI4 and Timepix3 telescopes
 - Operated with 16 ns timestamp granularity
 - Known row delay dependence corrected
 - Timing resolution ~ 7ns measured
 - Spatial resolution: ~12µm in row direction
 - Efficiency at 0° >99.5%, no pixel masked
 - Noise << 10⁻⁶/25ns

Large Fill-Factor CMOS sensors

Following promising results, a CLIC compatible chip with modified pitch ans 10 ns timestamp to be submitted in 2019!

Residuals

Conclusion

- The CLIC accelerator and the proposed physics measurements impose strict requirements on the vertex and tracking detector:
 - good single point resolution, low material budget
 - High occupancy requiring fine timestamping of hits
- The CLICdp vertex and tracking R&D focus on studying the available pixel detector technologies through simulation and characterization
 - Allpix² and TCAD simulation tools used to gain understanding of the devices
 - The Timepix3 telescope is used to characterize existing devices and evaluate their performances
 - Many devices studied: Planar sensors with fine pitch, ELAD Sensors, CCPDs, SOI pixel detectors, and CMOS sensors with small and large fill factor
 - Our device study allowed to identify promising technologies for CLIC vertex and tracker

backup

depletion

Enhanced Lateral Drift sensors (ELAD)

Concept to improve spatial resolution for thin sensors, H. Jansen (DESY/PIER):

- Deep implants to shape electric field lines in sensor
- Suggestive epitaxial layer grow and implantation
- Increased "linearised" charge sharing

Results of TCAD simulations show increased charge sharing for given pitch & thickness -> Production of wafer with various deep implant doping ongoing

CLICdp

Lateral 3lectric field: Current from MIP:

290V

See presentation by A. Velyka in previous session for details

Patent DE102015116270B4

Work in progress

SOI sensors

- **Monolithic integration** with sensor electronics separated fr high-resistivity substrate by Oxide layers
- Cracow SOI test chip in 200nm LAPIS SOI process, different parameters:
 - >= $30 \times 30 \mu m^2$ pixels
 - single-SOI and double-SOI wafers
 - · different readout schemes implemented
- First test beam results for 500 μm thickness
 - SOI HR-CMOS: $30x30 \mu m^2$ pitch, **Efficiency > 97%**, $\sigma_{SP} = 2\mu m$

CLIPS: CLICPixel SOI in production

- 4.4 × 4.4 mm (previous 2.9 mm)
- Targets
 - spatial resolution <3 μm
 - time resolution <10 ns
- Analog charge and time information in storage capacitors in each pixel
 - --> no need for fast clock distribution into matrix
- Snapshot analog readout between bunch trains with external ADC
- Timing reference base on tuned current source

esolution Y [um]

See <u>presentation</u> by M.Idzik in previous session for more details

CCPD Assembly process

CCPD + FEI4 unwrapping in clean room , Visual inspection

CCPD + FEI4 Plasma cleaning with Argon plasma

Glue pattern dispensed on chip using translating stages and time-pressure dispenser inside the flip-chip

Surface cleaning of chip with IPA/DI water to remove macrodust elements

CCPD + FEI4 Flip-chip alignment

Bonding: 2kg for 4 cm², 6 min at 100C, 1 min for irradiated + 24h at RT

CCPD Assembly process (In parallel)

Araldite 2011 Two-component mixing

Centrifugation of glue to remove aire bubbles

Alignment of syringue tip to machine coordinates (need to dispense one drop of glue)

Installation of syringue in Flip-Chip machine

Ready for glue dispense for 100min

CCPD Assembly process

CCPD Assembly process

After assembly, we achieve routinely glue thickness of < 500nm with a variation of 100nm across 2cm

#	align1	align2	align2 - align1
	$[\mu m]$	$[\mu m]$	$[\mu m]$
4	2.13	2.13	1.41
5	3.54	2.03	1.57
6	3.77	2.36	1.31
7	3.88	1.85	2.03
8	2.56	3.36	-0.8

Glue layer thickness

Energy Dispersive X-Ray Spectroscopy was used to investigate which material are present in the cross section

Aluminium

Copper

Silicon

Glue layer thickness

Energy Dispersive X-Ray Spectroscopy was used to investigate which material are present in the cross section

Aluminium

Copper

Silicon

