

ATLAS ITK Pixel Detector Overview

Attilio Andreazza

Università di Milano and INFN
for the ATLAS Collaboration

International Workshop on Semiconductor Pixel Detectors for Particles and Images
Academia Sinica, Taipei, 10-14 December 2018

Outline

The case for the ATLAS inner detector upgrade for the HL-LHC

- Detectors and front-end electronics
- Mechanics and services
- Overall system aspects (Trigger and DAQ)

and Outlook

Technical Design Report for the ATLAS Inner Tracker Pixel Detector ATLAS-TDR-030 / CERN-LHCC-017-01

ITK REQUIREMENTS AND LAYOUT

The HL-LHC upgrade

Month in Year

HL-LHC Physics Goals

- Rich physics program including:
 - Vector Boson Scattering
 - and other precision SM measurements
 - Higgs pair production
 - and precision Higgs boson properties
 - Beyond Standard Model searches
- Many reconstruction challenges:
 - High multiplicity events, highly boosted jets:
 - improve granularity and resolution
 - Rare events
 - improve in coverage and reconstruction efficiency

HL-LHC Physics Goals

- Rich physics program including:
 - Vector Boson Scattering
 - and other precision SM measurements
 - Higgs pair production
 - and precision Higgs boson properties
 - Beyond Standard Model searches
- Many reconstruction challenges:
 - High multiplicity events, highly boosted jets:
 - improve granularity and resolution
 - Rare events

2018

improve in coverage and reconstruction efficiency PIXEL

ITk requirements

Completely new inner detector

- full silicon tracker (TRT will have 100% occupancy)
- Keep occupancy at few ‰ level
 - Increase granularity by 8× for the pixel,
 (5× with respect to the insertable B-layer)
 - expand pixels to a larger radius
- Increase data rate capability

Average hits / readout chip / event at 200 pile-up

(Ring) Layer	Flat Barrel	Inclined Barrel	End-cap
0	223.0	136.7	80.9
1	26.6	27.8	37.7
2	19.3	20.1	21.0
3	12.9	12.7	13.3
4	9.9	9.1	9.3

from 24 Mhits mm⁻²s⁻¹ to 0.1 Mhits mm⁻²s⁻¹

Radiation hardness for 4000 fb⁻¹:

- Non ionizing energy loss (NIEL) up to $\Phi_{eq} = (2.5-3) \times 10^{16} \text{ n/cm}^2$.
- Total ionization dose (TID) up to 20 MGy

ITk requirements

- Improve resolution and robustness compared to the present detector:
 - track reconstruction efficiency >99% for muons, >85% for electrons and pions
 - fake rate < 10⁻⁵
 - robustness against loss of up to 15% of channels

ITk layout

- Strips at outer radii, pixels near to the interaction region
- Cover with at least 9 measurements tracks up to $|\eta|=4$

Pixel detector:

- 12.7 m², 5×10⁹ channels
- $-50\times50 \ \mu m^2 \ or \ 25\times100 \ \mu m^2$
- inclined modules
 and individually placed disks
 - minimize material and maximize resolution while keeping full coverage
- inner section replaceable after 2000 fb⁻¹

The active components

SENSORS AND FRONT-END

Hybrid module structure

- Baseline design mainly consists of ~4×4 cm² "quad hybrid" modules:
 - one sensor segmented into either 50×50 μm² or 25×100 μm² pixels
 - read out by four FE chips, each with 384×400 channels

A lot of experience from current detectors, but needs to scale up a factor 10 in total production

Sensor technologies

- One front-end for the whole detector
 - RD53 collaboration: joint ATLAS and CMS effort on common 65 nm design
 - Requirements given by the innermost layers

Sensor technology baseline optimized according to radiation hardness, cost

3D Sensors

- Innermost layer: 1.3×10¹⁶ n_{eq}/cm² for 2000 fb⁻¹
 - 150 μm thickness + 100 μm support wafer
 - Single-chip dies ~2×2 cm²
 - Sensor produced at FBK, CNM and Sintef
 - 50×50 µm² assessed
 - 25×100 µm² to be verified with RD53A assembly: radiation hardness of 1 Electrode design vs. yield for 2 Electrodes design

Planar sensors

Facing FE

Use n-in-p technology:

- One side processing: reduced cost and easier handling
- HV protection between sensor-edge and FE electronics:
 - BCB or Parylene under evaluation
- Thin sensors in inner section: 4.5×10¹⁵ n_{eq}/cm² for 2000 fb⁻¹
 - Hit efficiency saturation at lower bias voltage: smaller leakage current and power consumption
 - Critical point is efficiency loss due to bias structures
 - Many vendors on the market:
 CiS, FBK, HPK, Lfoundry.
 Micron, VTT...

Sensor performance

Bias voltage [V]

Front-end chip

RD53 Collaboration: joint ATLAS and CMS R&D

- 65 nm TSMC technology
- Final size ~2×2 cm² with ~160k pixels
- ATLAS version mid 2019, CMS version few months later
- Heavy use of modern design technologies to implement complex readout logic:
 - Managing ~223 hits/chip/bunch crossing
 - Local memory for 500 bunch crossing trigger latency
 - 4×1.28 Gb/s links with data compression

RD53A FE demonstrator:

- Full width / half depth chip
- Being used for qualification of:
 - Sensor design
 - Powering scheme and DCS
 - Module assembly and handling

Monolithic CMOS option

Depleted CMOS Detectors

 Charge collection by drift provides radiation hardness and timing resolution similar to planar sensors

- Large electrode designs (AMS/TSI, Lfoundry) have consistently shown high efficiency after irradiation
- Small electrode design (TowerJazz) very promising in term of noise, time resolution and power consumption
- Technically feasible for outermost layer
 - "relaxed" requirements:
 - NIEL: 1.5×10¹⁵ n_{eq}/cm² ,
 - TID: 0.8 MGy
 - ~10 hits/chip/bunch crossing
 - Large saving factor:
 - L4 is 3 m², 30% of all thick sensor production

The path to performance

MECHANICS AND SERVICES

Material budget

- Reduction of material is the key to:
 - Resolution for low momentum particles
 - Tracking efficiency (dominated by interaction with the detector)

2018

Local supports

- Lightweight carbon-carbon structures
- C0₂ evaporative cooling with Ti pipes

2018

Local supports

- Lightweight carbon-carbon structures
- C0₂ evaporative cooling with Ti pipes

Outer Endcap
Halfrings

Local supports

- Lightweight carbon-carbon structures
- C0₂ evaporative cooling with Ti pipes

Inner Endcap
Single or coupled disks

Serial powering

- Strong reduction in cable lines and material
- Up to 7A/8W on a quad-module
- Up to 14 modules in a single serial power chain
 - Need to provide a safety mechanism in case of module failure
 - Detector Control System:
 - Hardwired safety interlock
 - PSPP Chip+ DCS Controller
 - Diagnostic informationfrom FE

Trigger scheme

Considering two trigger schemes:

- 1 MHz 1-level trigger
 - 12.5 µs trigger latency
 - Fast track reconstruction for HLT
- 4 MHz 2-level trigger
 - 25 µs readout latency
 - L1 track trigger (outer layers+strips)

Single module

2018

Data transmission

- Output links at 5.12 Gb/s, with Aurora 64/62 encoding
- Concentrate the 1.28 Gb/s FE outputs near to modules
 - Position-dependent modularity
- Thin cables (twin-ax) till optoboards
- AC coupling: each FE is at different ground level due to serial powering.

CONCLUSIONS

Prototyping

PIXEL 2018

Intense activity to prepare for the detector construction

Conclusions

- The ITk Pixel Detector project is a non trivial challenge improve the high-performance devices already operating at the LHC:
 - 7× instantaneous luminosity
 - 13× integrated luminosity
 - 99.93% of solid angle coverage
- Innovation is required not only on the detector side, but also on services.
- About one year after the TDR the project is running at full speed to be ready for HL-LHC first collisions!

ATLAS ITK Talks and Posters **CINFN**

Hybrid Pixel

- Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
 - Marco Bomben, 11th December 16:20
- Performance of FBK/INFN/LPNHE thin active edge n-on-p pixel detectors for the upgrade of the ATLAS Inner Tracker
 - Giovanni Calderini, 11th December 11:10
- Characterization of RD53A compatible n-in-p planar pixel sensors
 - Anna Macchiolo, 11th December 11:35
- Study of efficiency and noise of fine pitch planar pixel detector for **ATLAS ITk upgrade**
 - Koji Nakamura, 11th December 12:25
- First CMS results on 3D pixel sensors interconnected to RD53A readout chip after high energy proton irradiation
 - Marco Meschini, 10th December Poster session
- Radiation-induced effects on data integrity and -link stability of RD53A
 - Marco Vogt, 11th December 17:35

ATLAS ITK Talks and Posters (NFN)

- Module Development for the Phase-2 ATLAS ITk Pixel Upgrade
 - Dai Kobayashi, 10th December Poster session
- Results of larger structures prototyping for the Phase-II upgrade of the pixel detector of the ATLAS experiment
 - Susanne Kuehn, 13th December 17:35
- A 5.12 Gbps serial data receiver for active cable for ATLAS Inner Tracker Pixel Detector readout upgrade
 - Le Xiao. 10th December Poster Session

ATLAS ITK Talks and Posters ONFIN

- R&D status of the Monopix chips: Depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade
 - Ivan Dario Caicedo Sierra, 13th December 11:10
- MALTA: an asynchronous readout CMOS monolithic pixel detector for the **ATLAS High-Luminosity upgrade**
 - Roberto Cardella, 11th December 12:00
- Simulations of CMOS sensors with a small collection electrode improved for a faster charge-collection and increased radiation tolerance
 - Ruth Magdalena Munker, 10th December 12:25
- Performance of the ATLASPix1 pixel sensor prototype in ams aH18 CMOS technology for the ATLAS ITk upgrade
 - Moritz Kiehn, 13th December 12:00
- Electrical characterization of AMS aH18 HV-CMOS after neutrons and protons irradiations
 - D M S Sultan, 10th December 12:00
- Developments towards a Serial Powering scheme in a monolithic CMOS technology for the ATLAS pixel upgrade
 - Siddharth Bhat. 10th December Poster session

PIXEL

2018

ADDITIONAL MATERIAL

ITk requirements

- Improve resolution and robustness compared to the present detector:
 - track reconstruction efficiency >99% for muons, >85% for electrons and pions
 - fake rate < 10⁻⁵
 - robustness against loss of up to 15% of channels

ITk requirements

- Improve resolution and robustness compared to the present detector:
 - track reconstruction efficiency >99% for muons, >85% for electrons and pions
 - fake rate < 10⁻⁵
 - robustness against loss of up to 15% of channels

Schedule

Trigger schemes

