

BEAST results on SuperKEKB beam background: focus on the PLUME pixelated system

Jerome Baudot on behalf of the BEAST/Belle II collaboration

- → Beam induced background at SuperKEKB & Belle II: BEAST
- \rightarrow The double-sided PLUME device
- → Single Beam background estimates
- \rightarrow Outputs with 2-sided measurements

Belle II physics goals

The intensity frontier

- Built up on B factories success
 - e+e- coll. at Y(4s)
 - integrated luminosity x 50
- Flavour studies
 - New source of CP violations
 - Lepton non-universality
 - Charged lepton flavour violation
 - Left-Right symmetry contribution
 - Dark sector
- Complementary / LHCb

Vertex Detector (VXD) Requirements

- Track impact parameters
 - Goal σ (high p) ~ 15 μ m
- B, D, decay vertices
 - Goal $\sigma \sim 60 \ \mu m$
- 30 kHz trigger rate

- Innermost layer
 - Hit rate >0.4 hits/ μ m²/s
 - TID: 20 kGy/year
- See F. Luetticke's talk from Monday 10th

SuperKEKB collider

The Belle II detector

Beam induced backgrounds

Single beam effects

Touschek ← intra-beam scattering

- rate
$$\propto \frac{I_{bunch}^2 N_{bunch}}{(\sigma_x \sigma_y) E_{beam}^3} = \frac{I_{beam}^2}{(\sigma_x \sigma_y) E_{beam}^3 N_{bunch}}$$

- Beam gas ← vacuum residues
 - rate $\propto I_{\text{bunch}} \times N_{\text{bunch}} \times P(I)$
 - Dynamic pressure $P(I) = (p_0 + p_1 I_{beam})$
- Synchrotron radiation \leftarrow magnet bending
 - rate $\propto I_{\text{beam}}$
- Beam-beam effects (QED)
 - rate ∝ Luminosity

 e^+e^-

Beam induced backgrounds

- Single beam effects
 - Touschek ← intra-beam scattering
 - rate $\propto \frac{I_{bunch}^2 N_{bunch}}{(\sigma_x \sigma_y) E_{beam}^3} = \frac{I_{beam}^2}{(\sigma_x \sigma_y) E_{beam}^3 N_{bunch}}$
 - Beam gas ← vacuum residues
 - rate $\propto I_{bunch} \times N_{bunch} \times P(I)$
 - Dynamic pressure $P(I) = (p_0 + p_1 I_{beam})$

- Expectations
- Dominates beam lifetime
- Higher relative impact at large radii (CDC, TOP)
- Sub-dominant

- Synchrotron radiation \leftarrow magnet bending
 - rate $\propto I_{\text{beam}}$
- Beam-beam effects (QED)
 - rate ∝ Luminosity

- Issue for innermost PXD (mostly horizontal plane)
- Dominant at L_{nominal}
 - Saturate VXD occupancy

Belle II in Phase 2

BEAST setup

BEAST goals

- Safe background conditions for VXD insertion / phase 3
- Real-time background monitoring during SuperKEKB tuning
- Understand individual background components

No final VXD

During Phase 1 (no collisions): Initial measurements with another BEAST setup

The BEAST setup: complementarity

	Sensor	Measurement		
B-II PXD	DEPFET 2 ladders	In-situ occupancy		hase 2 VXD vol
B-I SVD	DSSD 4 ladders	tracking & vertexing	Z	
Diamond	8 sensors	Ionizing dose in VXD		
FANGS	Hybrid pix (ATLAS) 3 ladders	Charged particle & X-ray synchroton rates		
CLAWS	Scint.tile SiPM (ILC) 2 ladders	Rates with ns precision / injection	SVD	/ PXD FANGS
PLUME	2sided MAPS (ILC) 2 ladders	Rates & two-sided track.	Final VXD	BEAS
MicroTPC	8 units	Fast neutron rate	~3.5 % X ₀	~4.0 %
He3 tube	4 units	Thermal neutron rate		γ
Rad.Film	Many	Radiation level	Materi	al budget
PinDiode	80 units	Radiation at focus.magnet		

PLUME double-sided layer

<u>Concept</u>

- Double-sided layer of pixel sensors
- Designed driven by ILC-VXD
- Air cooled
- Collab: Bristol, DESY, IPHC

PLUME-2

- 2x6 MIMOSA-26 sensors
 - Pitch 18.4 μm
 - Binary output -
 - Thinned to 50 μm
- 8 Mpixels
- integration time 115 µs ٠
- 2 mm thick Si-carbide foam
- Material budget 0.4% X0
- 4 ladders produced

50 µm thick sensors

foam

12 cm

to servicing board

Low mass flex cables

PLUME geometry in BEAST

- <u>2 complementary angles</u>
 - 135⁰ & 225^o
 - Opposite to VXD sector (0°)
- Radius covered
 - SVD range

BEAST results on beam Background at SuperKEKB: PLUME focus - J. Baudot - PIXEL 2018

BEAST

- Permanent online monitoring during tuning
- dedicated study with varied: collimator, current, beam size, injection

Phase 2 data taking

<u>SuperKEKB</u>

- Started March \rightarrow Ended July 2018
- Collimator adjustment and tuning
- β_{γ}^{*} decreased from 8 to 3 mm (σ_{γ}^{*} ~ 400 nm)
- Beam current up to ~800 mA

Best peak lumi: 5.4x10³³ cm⁻².s⁻¹

Radiation levels

From radiochromic films

- Decrease with radius in inner volume: ~1 kGy \rightarrow few 100's Gy
- Clear contribution from low penetrating radiations

PLUME specific

- 99% up time during all Phase 2 period
- No significant sign of TID ⇔ crosschecked by radio.films (~200 Gy)

Single-Beam background estimate 🕸 🚰

Separate contributions through their dependence to current and beam-size

$$Rate(I, \sigma_y) = T\left(\frac{I_{beam}^2}{\sigma_y N_{bunch}}\right) + B\left(p_1 I_{beam}^2 + p_0 I_{beam}\right)$$

- 2 absolute contributions to rate: T (Touschek), B (Beam-gas)
 - T, B specific to each detector

BEAST results on beam Background at SuperKEKB: PLUME focus - J. Baudot - PIXEL 2018

Single-Beam background estimate 🏵 🚰

- Unknown additional contribution for HER
 - For large beam size, rate rise again!
 - Data favour a "Touschek-like" contribution

$$Rate(I, \sigma_y) = T\left(\frac{I_{beam}^2}{\sigma_y N_{bunch}}\right) + B\left(p_1 I_{beam}^2 + p_0 I_{beam}\right) + X\left(\frac{I_{beam}^2}{N_{bunch}}\sigma_y^3\right)$$

- Unclear origin
 - Large beam tails to account for it

Single-Beam background findings

- PLUME data shown so far, but of course similar plots for all BEAST/Belle II
- Rates in inner volume during Phase 2
 - Of course $O(10^2)$ smaller than expectation for phase 3
 - Dominated by LER wrt HER → Additional collimators for phase-3
 - Beam Gas ≥ Touschek for PXD radii
 - Beam Gas < Touschek for SVD radii

- Synchrotron radiation
 - 1st observation (PXD, SVD, FANGS)
 - X-rays in 8-15 keV range
 - Not well reproduced in simulation
 - Not seen in PLUME

Sinlge-Beam background findings

- Dedicated beam simulation (SAD)
 + GEANT 4
- Relative rates (r, ϕ) OK
- LER rates reproduced within a factor 5-20
- HER rates not reproduced reasonably ⇒Under investigation

Luminosity background ?

Luminosity background

- Mostly e^{\pm} from interaction point (IP) at low momentum (< 50 MeV)
- $p_T > 15$ MeV to reach PLUME (5 cm radius)
- "Tracking" with PLUME double-sided feature
 - Associate nearest hits on both sides pointing to IP
 - Bending & low p => dR< few mm & $\phi \sim \pi/2$

Luminosity background in MC

- Sensors nearest IP along beam axis
- $-2.0 < \phi < 1.4$ Rad
- dR < 2 mm

 \Rightarrow Efficiency on total # particles from luminosity background = (5 ± 1) 10⁻³

Luminosity background in data

Run with average luminosity 1.3 10³³ cm⁻².s⁻¹

- After correcting for efficiency
- Background from luminosity ~1 hitscm²/s for L~10³³ cm⁻².s⁻¹
- Hit rate / Lumi ratio agrees within 10% between MC and data
- ⇒ Lumi. Background barely visible 160 to 650 x lower than Single Beam background

Summary

Beam induced background from phase-2 (current status)

- Low enough to start operation of full VXD & Belle II in general
- Low Energy Ring contribution dominates High Energy ring
- Discrepancy with respect to current simulation ⇒ under investigation
- Further background mitigation during early phase-3
 - Dedicated devices: CLAWS, more Diamonds, pin-diodes, He3

PLUME in BEAST

- Went through complete data taking during phase-2
 - Still perfectly usable
- Double-sided feature provide 1st glimpse on luminosity-related background
 - Negligible for lumi < 10³⁴ cm⁻².s⁻¹ as expected

Future of PLUME as a versatile double-sided pixelated system

- Current version exploits 10 years design
 - Still proves very useful
 - Needs upgrade with newest (fastest) thin sensors
- Demonstration of longer ~50 cm range close to 0.3 $\%~X_{0}$