

Crab – RFD prototype: Production Status Update

M. Garlaschè & <u>L. Prever-Loiri</u> with contributions from all 15th September, 2017

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

RFD Manufacturing Strategy

3x main subassemblies

RFD Manufacturing Strategy

- Initial feasibility well advanced (cut-out & technologies)
- Major Differences (w.r.t. U.S.):
 - Transitions between end cover and ports: machining from bulk
 - Welding interface of waveguide on cavity sides

RFD Manufacturing Strategy: Sides

End Caps: Aperture Machining

<u>OPTION 1</u> : *Vertical cut* Thickness variation 4.2mm to 5.9mm <u>OPTION 2</u>: 20° cut Thickness variation 4mm to 4.6mm

Welding Ports to End Caps

Welding V-HOM

Welding H-HOM and FPC

Machining after welding and geometry adjustement Sides + thickness 3.0 mm

Manufacturing Strategy: Central Body

Manufacturing process:

- 1. Bowl forming and machining
- 2. Corner forming and machining
- 3. Bending of Central body (extra length)
- 4. Machining aperture of half body
- 5. Welding Bowl/Corner (internal)
- 6. Geometry adjustement and machining
- 7. Welding Corner/Central Body (internal)
- 8. Geometry adjustement
- 9. Machining of linear welding seam

Manufacturing Strategy: Corner Transition

Manufacturing process:

- External edge Bending
- Internal edge: extrusion
- Coining
- Edges machining

Manufacturing Strategy: Bowl

Geometry of welding seam to be defined

Manufacturing Process:

- deep drawing
- Coining
- Machining (edges plus eventual features)

Body Assembly

Two linear welds with possible internal re-welding (RF surface improvement)

RFD Final Assembly

RFD-Shaping

- Shaping philosophy & draft tools finished (thanks to DQW experience)
- Initial FE analyses started (max stress strain, indicative sheet size, pleating, forces...)

BOWL: deep drawing + coining

Finite Elements Analyses

Effective Plastic strain $\epsilon_{plastic}$ distributions

RFD bowl (Radius 15mm)

DQW bowl Max. Effective Plastic strain: 0.56

Should we worry about these peaks in strain?

- ε_{UTS} is 0.5 0.8 in unidirectional tests but considering the triaxility, there is a larger margin
- Peak is due to compression on surface opposite to RF
- We have already observed some buckling of the material in the DQW bowl (rather than compression-driven failure)

Finite Elements Analyses

Thickness distribution Comparison

<u>RFD bowl</u> (Radius 15mm)

Conclusions

- Initial **feasibility study** well **advanced** (cut-out & technologies)
- Shaping:
 - <u>Bowl & End Caps</u>: philosophy of tools **finished** (thanks to DQW experience)
 - <u>Ports</u>: philosophy of tool to be defined
 - Initial FE analyses on going (max stress strain, indicative sheet size, pleating, forces...)
- NEXT:
 - Purchase Nb & Nb55Ti
 - launch 'standard' manufacturing (extremities)
 - Cavity design (cut out, components definition...)
 - Tools design

Thanks for your attention!

