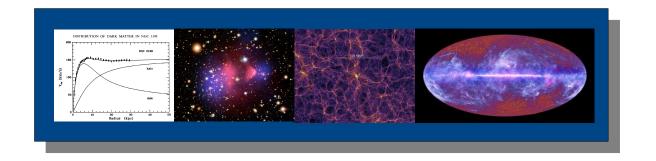
X + MET versus model-specific signatures: pros and cons.

Kai Schmidt-Hoberg

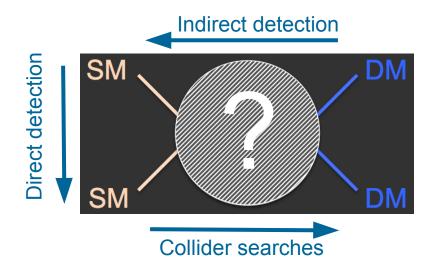
Mandate:

"The contribution should highlight the complementarity between "simple" X + MET signatures that will have been discussed in the preceding session and "complex" model-specific signatures, as in e.g., supersymmetric models with dark matter candidates..."



Dark matter - how will it reveal itself?

Dark matter exists!


...but we know next to nothing about its particle physics properties

Q: So how does it show up at colliders (if at all)?

A: ???

Q: How likely will it be in MET + X?

A: ???

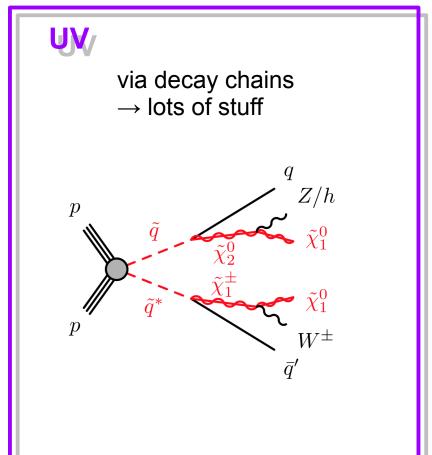
Theory for dark matter

Need models for dark matter to shape expectations (and experimental search strategies)

UV

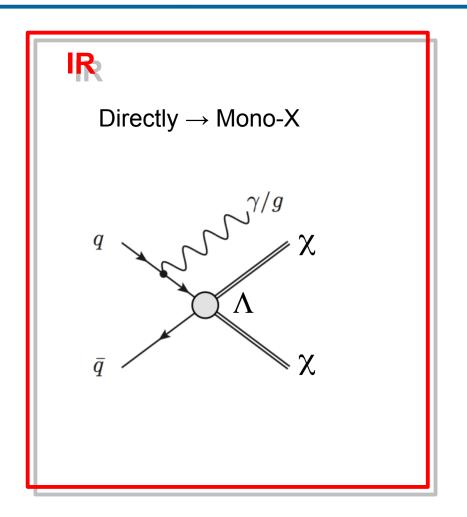
- Tackle fundamental problems such as e.g. hierarchy problem and look for implications
 - WIMPs
 - ...
- Well-motivated dark matter candidates, but also strong theoretical bias

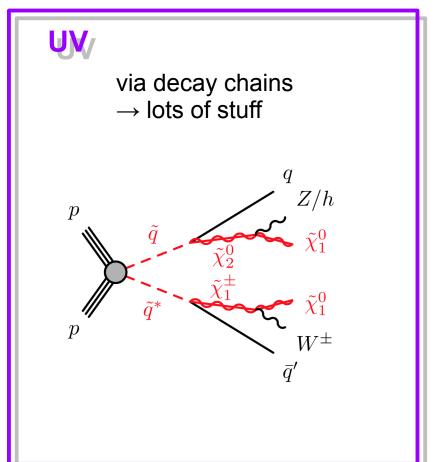
IR


- Naturalness arguments suggest new physics at the LHC
- Nothing yet → motivates broader thinking.
- As model independent as possible
- EFTs or simplified models

DM production

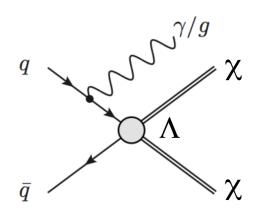
> Expected signatures?

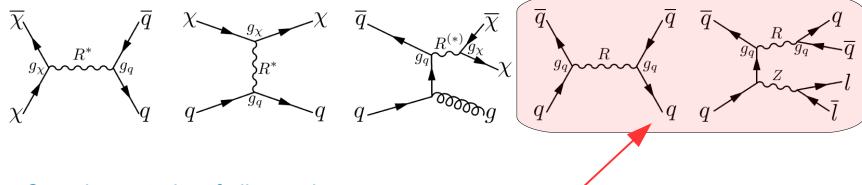




DM signatures

Plan: IR→ UV (simplified model → SUSY scenarios → other signatures)



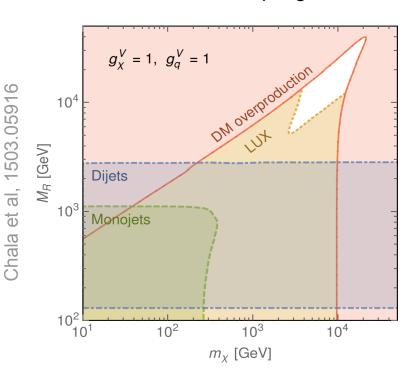

EFTs or Mono-X only

- > EFTs: If mediating particles are sufficiently heavy, valid to use effective operators
- > Mono-X the only signature!

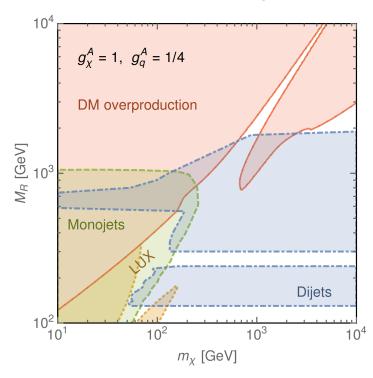
$$\frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^2}$$

If the mediator is accessible at the LHC, additional signatures are possible

- Complementarity of all searches:
 - Where do we expect to see DM first?


Interactions not present in the EFT

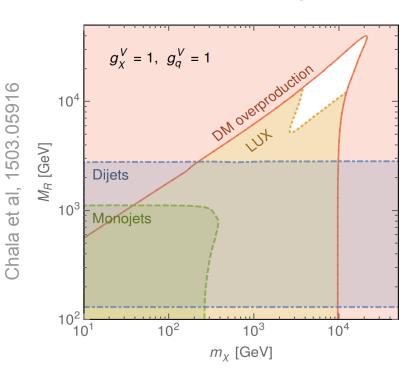
→ Sarah Malik's talk


Where do we expect to see DM first?

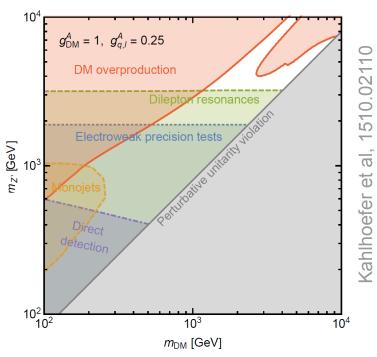
Vector couplings

 Direct detection experiments are the obvious discovery channel for vector couplings

Axial couplings



- Almost no constraints from direct detection
- Strong complementarity between monojet and dijet searches

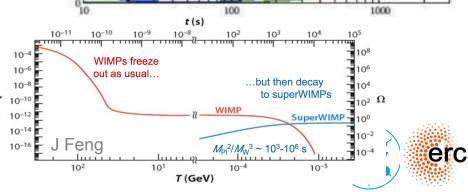

Where do we expect to see DM first?

Vector couplings

 Direct detection experiments are the obvious discovery channel for vector couplings

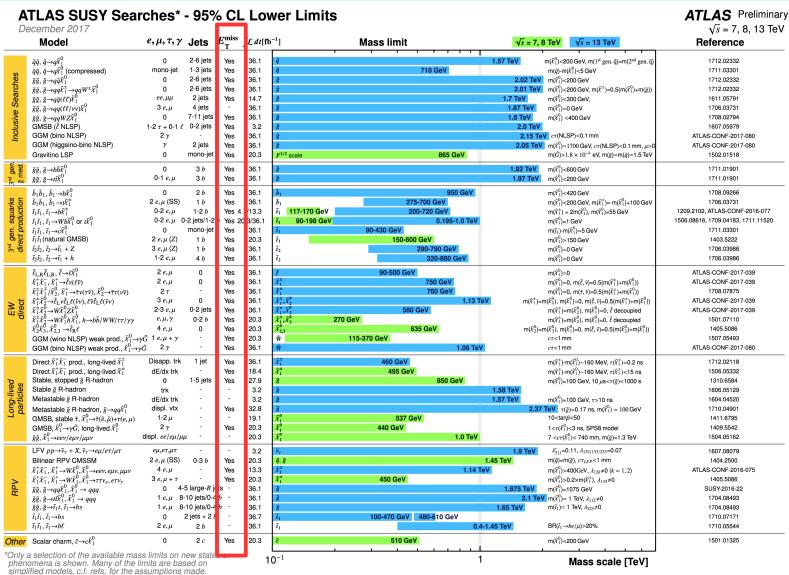
Axial couplings

- But: issues with unitarity and gauge invariance → Felix' talk!
- Picture different again monojets typically not competitive
- Need dark Higgs→ Talk by Michael Duerr!

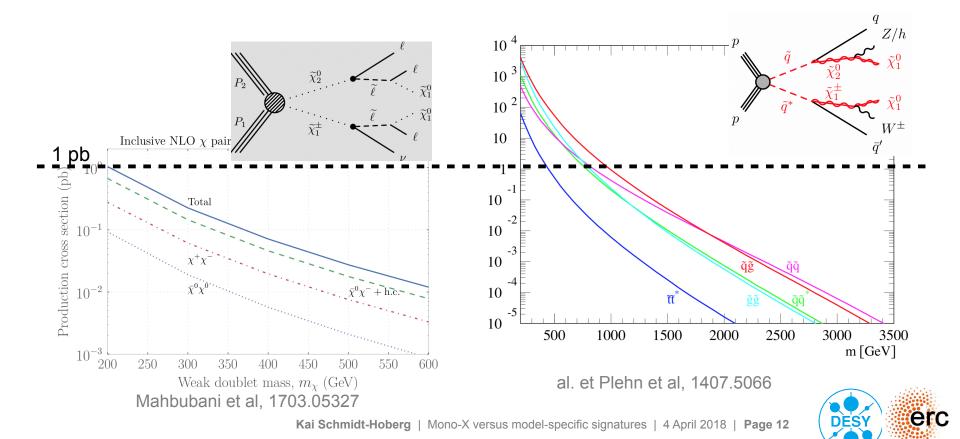

Full-blown models - here: SUSY

- Neutralinos (mixture of bino, Wino and Higgsino) and gravitino good dark matter candidates
- > Neutralino relic abundance? → freeze out
- Bino: Typically need to finely tune via coannihilations or resonances :-(
- Wino: m ~ 3TeV, challenged by ID
 Lisanti et al 1307.4082
- Higgsino: m ~ 1TeV, looking good :-)

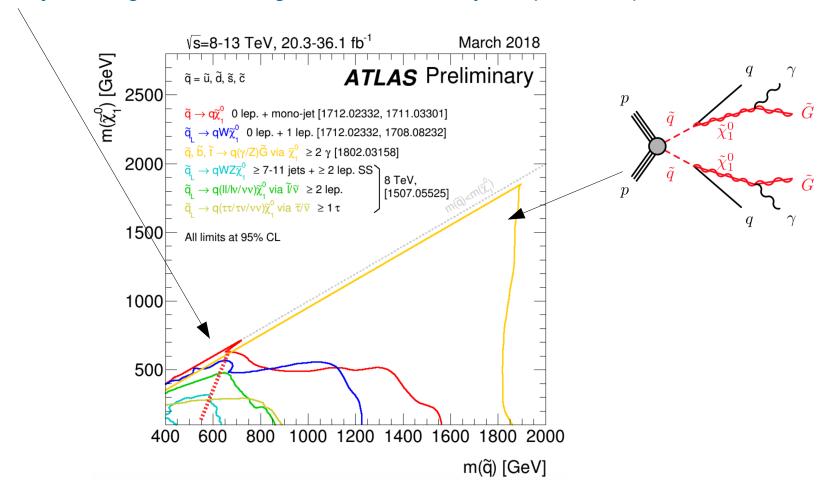
> Pure states → very small DD cross sections


Kai Schmidt-Hoberg | Mono-X

Overview SUSY channels


Overview SUSY channels

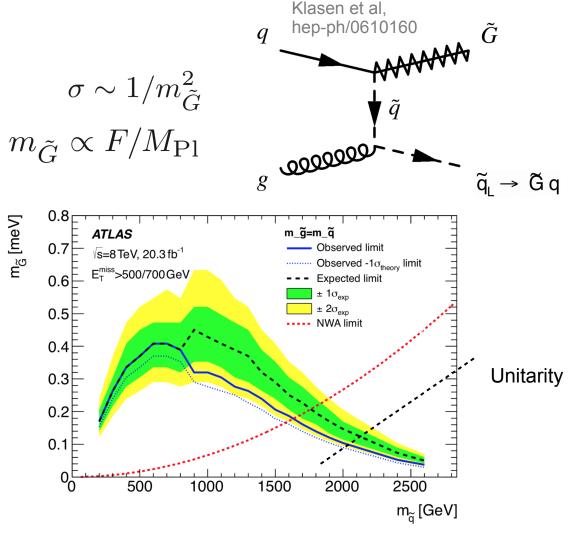
Model		e,μ, au,γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} \ dt \ \ \begin{matrix} ATLAS \\ \sqrt{s} = 7, 8, 13 \ TeV \end{matrix}$ Reference
Inclusive Searches	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1 1712.02332 1711.03301 1712.02332 1712.02332 1611.05791
	$ ilde{q} ilde{q}, ilde{q} ightarrow q ilde{\chi}_1^0 ext{ (compressed)} \ ilde{g} ilde{g}, ilde{g} ightarrow q ilde{q} ilde{\chi}_1^0 ext{ }$	mono-jet 0	1-3 jets 2-6 jets	Yes Yes	36.1 1611.05791 1706.03731 1708.02794 36.1 4IDS7.05979 ATLAS-CONF-2017-080
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1
Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0}$	ee, μμ 3 e, μ	2 jets 4 jets	Yes -	14.7————————————————————————————————————
sive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\tilde{\iota}\tilde{\iota}/VV)\lambda_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0	7-11 jets	Yes	36.1 1709.04183.7711.11520 1711.03301 1403.5222 1706.09986
snjou	GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP)	1-2 $ au$ + 0-1 ℓ 2 γ	0-2 jets -	Yes Yes	3.21706.03986 ATLAS-CONF-2017-039 36.1 ATLAS-CONF-2017-039
1	GGM (higgsino-bino NLSP)	$\frac{2}{\gamma}$	2 jets	Yes	36.1 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110
	Gravitino LSP	0	mono-jet	Yes	20.3 1405.5086 1507.05493 ATLAS-CONF-2017-080
lived	Direct $\hat{X}_1^+\hat{X}_1^-$ prod., long-lived \hat{X}_1^\pm Disapp. trk 1 jet Yes 36.1 \hat{X}_1^\pm Direct $\hat{X}_1^+\hat{X}_1^-$ prod., long-lived \hat{X}_1^\pm dE/dx trk Yes 18.4 \hat{X}_1^\pm Stable, stopped \hat{g} R-hadron 0 1-5 jets Yes 27.9 \hat{g} Stable \hat{g} R-hadron trk - 3.2 \hat{g}	460 GeV 495 GeV 850 GeV	r	$\mathbf{n}(\tilde{\chi}_1^{\pm})$ - $\mathbf{m}(\tilde{\chi}_1^0)$ ~160 MeV, $\tau \mathcal{C}$ $\mathbf{n}(\tilde{\chi}_1^{\pm})$ - $\mathbf{m}(\tilde{\chi}_1^0)$ ~160 MeV, $\tau \mathcal{C}$ $\mathbf{n}(\tilde{\chi}_1^0)$ =100 GeV, 10 μ s< $\tau \mathcal{C}$	$\tilde{\chi}_{1}^{\pm}$)<15 ns 1506.05332
> Most searches are X+MET (although typically X is more than a monojet)					
NBV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 ⁻ 1.0 GeV	1.9 TeV 1.45 TeV .14 TeV 1.875 TeV 2.1 TeV	$\chi' < cr(\tilde{\chi}^0_1) < 740 \text{ mm, m}(\tilde{g})$ $\chi'_{111} = 0.11$, $\chi_{132/133/233} = 0$. $m(\tilde{g}) = m(\tilde{g})$, $cr_{LSP} < 1 \text{ mm}$ $m(\tilde{\chi}^0_1) > 400 \text{GeV}$, $\chi_{124} \neq 0$ (k $m(\tilde{\chi}^0_1) > 0.2 \times m(\tilde{\chi}^1_1)$, $\chi_{133} \neq 0$ $m(\tilde{\chi}^0_1) = 1 \text{ TeV}$, $\chi_{112} \neq 0$ $m(\tilde{\chi}^0_1) = 1 \text{ TeV}$, $\chi_{232} \neq 0$	07 1607.08079 1404.2500 = 1, 2) ATLAS-CONF-2016-075
	$\vec{t}_1\vec{t}_1, \vec{t}_1 \rightarrow bs$ 0 2 jets + 2 b - 36.7 \vec{t}_1 1 $\vec{t}_1 \rightarrow bs$ 2 e, μ 2 b - 36.1 \vec{t}_1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100-470 GeV 480-610 GeV	, I ,	$BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ $n(\tilde{t}_1^0) < 200 \text{GeV}$	1710.07171 1710.05544 1501.01325
ph	nly a selection of the available mass limits on new states or lenomena is shown. Many of the limits are based on mplified models, c.f. refs. for the assumptions made.		1	Mass scal	e [TeV]


Strong vs EW production

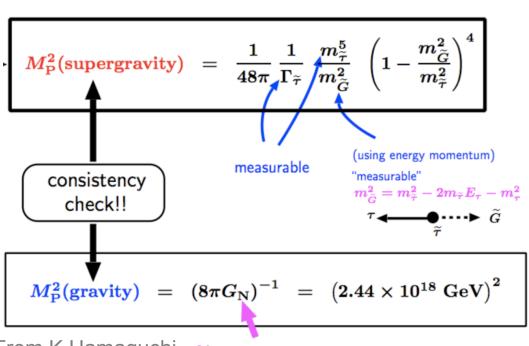
- Monojets for SUSY?
- Direct DM (or electroweakino) production: cross sections too small
- > Relevant constraints via strong production (if other particles too soft).

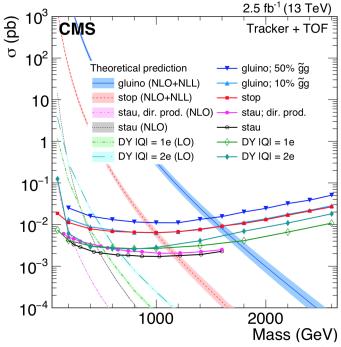
Monojets for the MSSM

Monojets can give the leading constraints for very compressed spectra.



Not the same models (so no 1-1 comparison)!

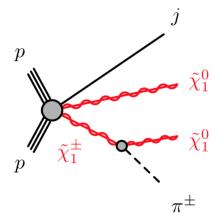

Monojets for the MSSM


Monojets also relevant for a very light gravitino LSP (without ISR)

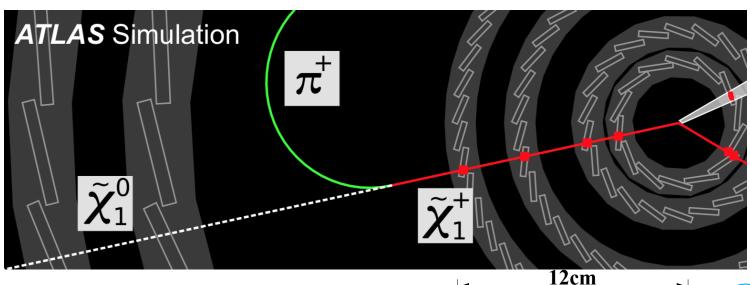
Weak scale gravitino

- Dark matter production may also happen completely without large MET
- Consider a heavier gravitino → very weakly coupled
- > NLSP can be charged (e.g. stau) and have very long lifetime
- Collider signature: 'stable', charged, massive particles (no MET)

erc

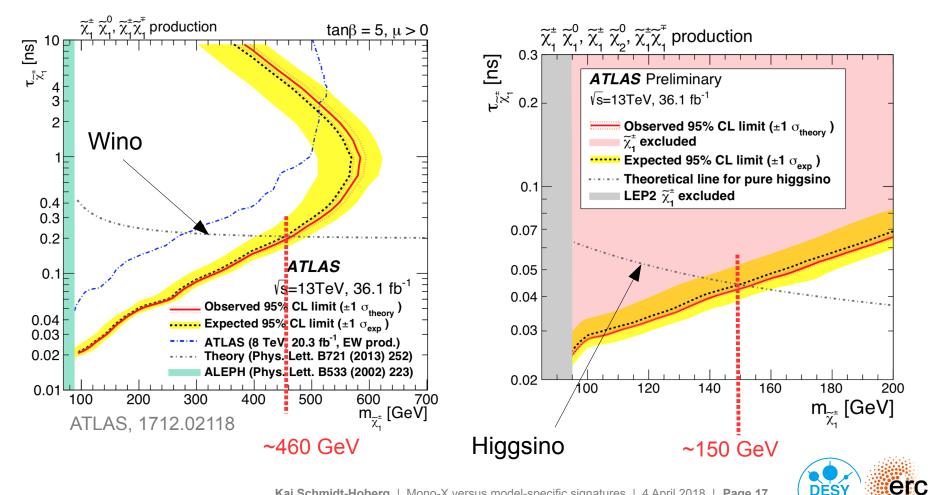

DESY

From K Hamaguchi Newt

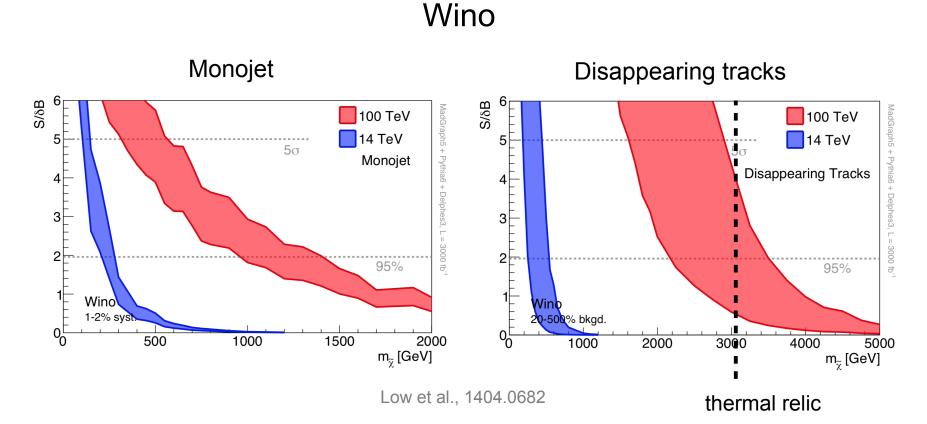

Newton const.

Higgsino/Wino dark matter

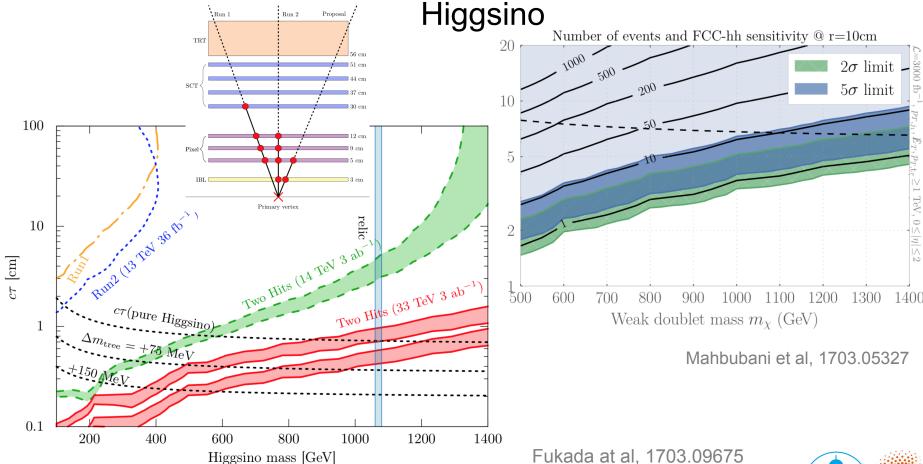
Direct Electroweakino production?



- Dark matter state accompanied by nearly degenerate charged state (chargino)
- Long lifetime (few cm) due to small mass splitting! → disappearing charged tracks!


Higgsino/Wino dark matter

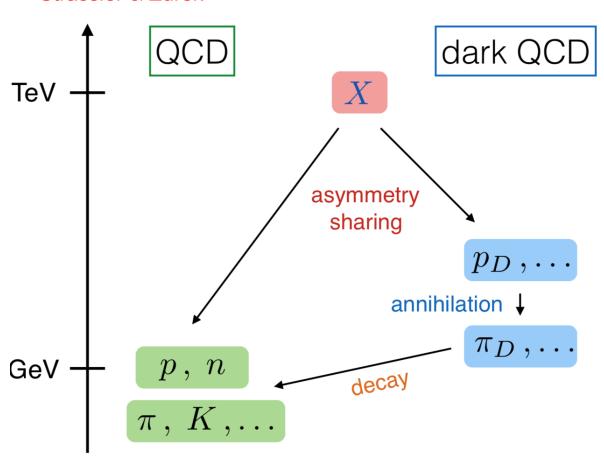
- Relevant constraints for Winos ($\Delta m \sim 160 \text{ MeV} \rightarrow 6 \text{ cm}$)
- Higgsinos have larger mass splitting ($\Delta m\sim350 \text{ MeV} \rightarrow 0.7 \text{ cm}$)


Higgsino/Wino dark matter – the future

Sood prospects for discovery at 100 TeV collider (higher boosts → longer tracks)

Higgsino/Wino dark matter – the future

Sood prospects for discovery at 100 TeV collider (higher boosts → longer tracks)


Other signatures

Slide from P Schwaller

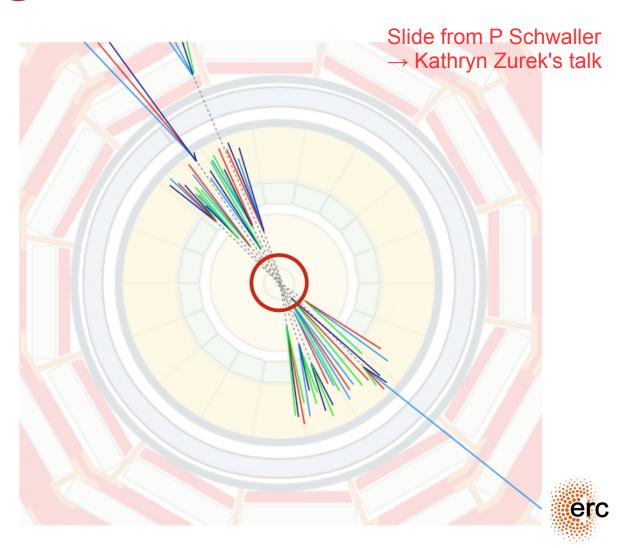
→ Kathryn Zurek's talk

Dark QCD

Hidden valley idea by Strassler & Zurek

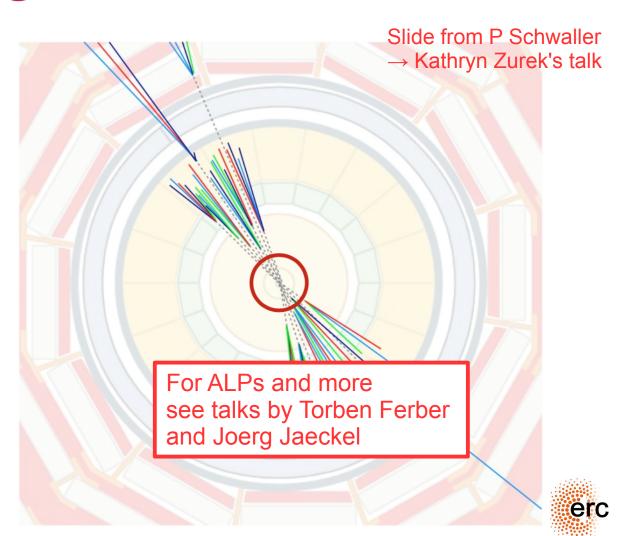
- SU(N) dark sector with neutral "dark quarks"
- Confinement scale

 $\Lambda_{
m darkQCD}$


- DM is composite "dark proton"
- "Dark pions" unstable, long lived

Other signatures

Emerging Jets at the LHC


- Production of mediator, decay to dark quarks
- Characteristic:
 - few/no tracks in inner tracker
- New "emerging" jet signature
- Smoking gun of composite hidden sectors

Other signatures

Emerging Jets at the LHC

- Production of mediator, decay to dark quarks
- Characteristic:
 - few/no tracks in inner tracker
- New "emerging" jet signature
- Smoking gun of composite hidden sectors

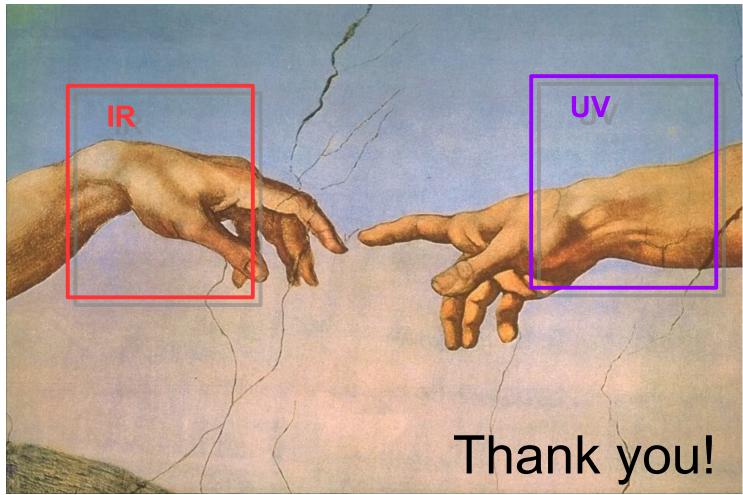
Conclusion

IR

- Mono-X rather model independent signature
- X May not give the leading constraint – i.e. DM may be discovered in a different channel (hopefully!!!)
- X Some DM models don't feature Mono-X at all

UV

- ✓ Well-motivated signatures
- Study of consistent UV theories may reveal signature which hasn't been thought of
- X Very model-dependent


Conclusion

Which then should we choose: the generic or the realistic?

Conclusion

Which then should we choose: the generic or the realistic?

