Constraining simplified models of dark matter with searches for long-lived charged particles

Alexis Plascencia

with Valentin Khoze and Kazuki Sakurai

[arxiv:1702.00750] [JHEP 06(2017)041]

DM@LHC Heidelberg 2018

WIMP paradigm

Initially dark matter is in thermal-equilibrium with the Standard Model

2

WIMP paradigm

- Current experiments already have strong constraints on the simplest WIMPs scenarios, where Dark Matter is coupled to Standard Model gauge bosons or the Higgs
- In lack of a signal from DM experiments, we need to explore as much as we can of the WIMP's parameter space
- An alternative and complementary search to Direct and Indirect detection experiments is the production of Dark Matter at colliders, such as the LHC
- There is a plethora of theories of Dark Matter, nevertheless in finding experimental constraints we would like to be as modelindependent as possible

Simplified models of dark matter

- EFT is a powerful and model independent approach
- Consistent description if and only if energy of interaction $E \ll M_{NP}$
- In the context of DM, there is no reason not to expect that $M_{MED} \approx m_{DM}$
- EFT might not the best framework for Dark Matter searches at colliders

Dark Matter

- Dirac or Majorana fermion
- Complex or real scalar
- Vector?

Mediators

- Vector
- Axial-vector
- Scalar
- Pseudoscalar

Co-annihilation

Dark matter annihilation into pair of tau's

• We need a mechanism to reduce the DM relic density

$$(\sigma v)_{\rm ann}^{\rm s-wave} = \frac{g_R^4 m_\tau^2}{32\pi m_\chi^4} \frac{1}{(1+r^2)^2}$$

 $\propto m_{ au}$ Chiral suppression

Co-annihilation

Dark matter annihilation into pair of tau's

Chiral suppression

 $g_{\rm DM}$

Co-annihilation:

 $\Delta M \lesssim m_{DM}/25$

 τ^{\pm}

• Overproduces dark matter (Unless large couplings)

 We need a mechanism to reduce the DM relic density

Freeze-out temperature $T_F \sim m_{DM}/25$

Boltzmann factor $\exp\left(-\frac{\Delta M}{T}\right)$

We need mass splitting of 4% of m_{DM}

Stau co-annihilation strip

Inspired by the stau co-annihilation strip in the CMSSM: (stau and neutralino close in mass)

We want to generalize this.

[Citron, Ellis, Luo, Marrouche, Olive, Vries 2012] [Desai, Ellis, Luo, Marrouche 2014]

LHC production is relevant

Direct Detection: No tree-level interaction with quarks (anapole moment)

One-loop suppressed

 $m_{\rm DM} \simeq 500 \,{\rm GeV}$ and $\Delta M/m_{\tau} < 1$, $\mathcal{A}/g_{\rm DM}^2 \sim 8 \cdot 10^{-7} \,[\mu_N \cdot {\rm fm}]$

LUX $A > 2 \times 10^{-5} [\mu_N \text{ fm}]$

Indirect Detection: Due to chiral suppression, DM annihilation is velocity-suppressed

In today's Universe, DM non-relativistic v/c << 1 In the limit $m_{DM} \gg m_{\tau}$: $\sigma v \propto v^2$ $\sigma v \propto v^4$

p-wave suppressed for Majorana DM d-wave suppressed for scalar DM

Nevertheless, the channel $SS \rightarrow ll\gamma$ can be relevant for future experiments for scalar DM For large ΔM [Giacchino, Lopez-Honorez, Tytgat 2013]

LHC production

 Drell-Yann pair production of coannihilation partner

 We study Dirac fermion and complex scalar as coannihilation partners

Long-lived electrically charged particles

If $\Delta M < m_{ au}$ only 3-body and 4-body decays open:

Searching for long-lived charged particles

 A long-lived charged particle escapes inner detector, leaving a charged track from ionization energy loss

 Long-lived charged particles that have lifetimes > 10⁻⁸
seconds, leave anomalous charged track and ionize the muon chamber

cles –8	CMS 2013/07/30 CMS-EXO-12-026
us e the	Searches for long-lived charged particles in pp collisions at $\sqrt{s}=$ 7 and 8 TeV
A Plascencia DM@	The CMS Collaboration*

Majorana Dark Matter (Model 1b)

2.5

2.0

1.5

1.0

0.5

0.0

200

400

600

 $M_{\phi} \, [\text{GeV}]$

800

1000

 $\Delta M [\text{GeV}]$

20

Majorana Dark Matter (Model 1b)

DM CAP
$$(Q = -1)$$

 χ ϕ

$$g_R \phi^* (\chi \tau_R) + g_L \phi^* (\chi \tau_L) \subset \mathcal{L}$$

NOT gauge-invariant, requires UVcompletion, e.g. SUSY

21

 $\theta = 0$

Gauge-invariant and renormalizable, no problems of unitarity

3.0

2.5

2.0

1.5

1.0

0.5

0.0

200

400

600

 $\Delta M [\text{GeV}]$

Scalar DM

 $g_{\rm DM}\!=\!0.5$

800

 M_{Ψ} [GeV]

Vector dark matter (Model 3)

NOT gauge-invariant, requires UV-completion, e.g. Extra-Dimensions

- The lightest KK excitation is usually the 1st excitation of the photon
- DM spin=1, so there is no chiral suppression

$$m_n^2 = m_0^2 + rac{n^2}{R^2}$$

Vector dark matter (Model 3)

$$A_{\mu}\left(\Psi\,\gamma^{\mu}\,\tau_{R}\right) \ \subset \ \mathcal{L}$$

NOT gauge-invariant, requires UVcompletion, e.g. Extra-Dimensions

3.0

2.5

2.0

1.5

1.0

0.5

0.0

 $\Delta M [\text{GeV}]$

 $g_{\mathrm{DM}} = 0.1$

Vector DM

Vector dark matter

Vector dark matter

Conclusions

- We have studied 4 classes of simplified models, that have 3-point interaction with *τ*-lepton
- We have considered the case for Majorana, real scalar and vector dark matter
- Instead of a mediator, these simplified models have a co-annihilation partner that has non-zero hypercharge
- The crucial signatures are tracks of long-lived charged particles, these searches had not been studied before in the context of simplified models of DM
- In the four simplified models we have introduced there are only 3 free parameters
- The possible discovery of a long-lived electrically charged particle could provide an insight into the nature of dark matter Thank you.

Indirect Detection

Color coding corresponds to parameter

 $\frac{M_{CAP}}{M_{DM}}-1$

Blue dots correspond to small mass splitting

[Giacchino, Lopez-Honorez, Tytgat 2013]

Searching for long-lived charged particles

- To distinguish from muons experimentalists rely on energy loss and the time of flight (or bending from magnetic field to infer speed)
- Anomalous charged tracks: Heavier charged particles are slowly moving ($m > 100 \text{ GeV} \Rightarrow \beta = v/c < 0.9$) and have large energy loss through ionization dE/dx

[CERN Press Office]