

Consistent Models of Dark Matter at the LHC

Valentin Titus Tenorth

Martin Bauer & Martin Klassen arXiv:1712.06597

> DM@LHC Heidelberg April 05, 2018

Ø

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Model Landscape

Image: doi.org/10.1016/j.dark.2015.08.001

DM EFT vs. Simplified Models

$$\mathcal{L}_{\mathsf{EFT}} = \frac{1}{\Lambda^2} \, \bar{q} \gamma_5 q \bar{\chi} \gamma_5 \chi$$

$$p^2 \ll \Lambda^2$$

Break down @LHC → Restore Mediator [Talk by K. Schmidt-Hoberg]

DM EFT vs. Simplified Models

$$\mathcal{L}_{\mathsf{EFT}} = \frac{1}{\Lambda^2} \, \bar{q} \gamma_5 q \bar{\chi} \gamma_5 \chi$$

 $p^2 \ll \Lambda^2$

Break down @LHC → Restore Mediator [Talk by K. Schmidt-Hoberg] $\mathcal{L}_{\mathsf{simp}} = g_q A \bar{q_L} \gamma_5 q_R + g_\chi A \bar{\chi_L} \gamma_5 \chi_R$

$$\propto \frac{g_q g_\chi}{p^2 - M^2}$$

Not gauge invariant \rightarrow Violate Unitarity [Talks by F. Kahlhoefer, G. Polesello]

•

Consistent Model for Pseudoscalar

(One) minimal solution to restore Gauge Invariance

 → Embedding the Pseudoscalar in a 2nd Higgs Doublet

Universal signals → Coupling to DM via effective operators

Consistent Model for Pseudoscalar

(One) minimal solution to restore Gauge Invariance

 → Embedding the Pseudoscalar in a 2nd Higgs Doublet

Universal signals → Coupling to DM via effective operators

$$\mathcal{L} = \sum_{i,j=1}^{3} y_{ij}^{u} \bar{Q}_{i} H_{u} u_{j} + \sum_{i,j=1}^{3} y_{ij}^{d} \bar{Q}_{i} H_{d} d_{j} + \sum_{i,j=1}^{3} y_{ij}^{l} \bar{L}_{i} H_{d} l_{j}$$
$$+ \frac{c_{\chi}}{\Lambda} H_{u}^{\dagger} H_{d} \bar{\chi} \chi + \frac{c_{5}}{\Lambda} H_{u}^{\dagger} H_{d} \bar{\chi} \gamma_{5} \chi + h.c.$$

Free (physical) Parameters:

 $M_A, M_H, M_{H^{\pm}}, \tan\beta, \cos(\beta-\alpha), c_{\chi}, c_5, m_{\chi}$

Consistent Model for Pseudoscalar

(One) minimal solution to restore Gauge Invariance
→ Embedding the Pseudoscalar in a 2nd Higgs Doublet
Universal signals → Coupling to DM via effective operators

$$\mathcal{L} = \sum_{i,j=1}^{3} y_{ij}^{u} \bar{Q}_{i} H_{u} u_{j} + \sum_{i,j=1}^{3} y_{ij}^{d} \bar{Q}_{i} H_{d} d_{j} + \sum_{i,j=1}^{3} y_{ij}^{l} \bar{L}_{i} H_{d} l_{j}$$
$$+ \frac{c_{\chi}}{\Lambda} H_{u}^{\dagger} H_{d} \bar{\chi} \chi + \frac{c_{5}}{\Lambda} H_{u}^{\dagger} H_{d} \bar{\chi} \gamma_{5} \chi + h.c.$$

Free (physical) Parameters:

 $M_A, M_H, M_{H^{\pm}}, \tan\beta, \cos(\beta-\alpha), c_{\chi}, c_5, m_{\chi}$

Higgs Signal Strength

▶ 2HDM of Type II

•
$$m_{\chi} = 0$$

- Disfavors scalar DM couplings
- Alignment limit $\cos(\beta \alpha) \approx 0$

 $M_A, M_H, M_{H^{\pm}}, \tan \beta, \cos(\beta - \alpha), c_{\chi}, c_5, m_{\chi}$

1606.02266 (ATLAS & CMS), 1509.00672 (ATLAS), 1610.09218 (CMS)

Relic Density & Indirect Detection

- $m_A = 160 \text{ GeV}$
- $\blacktriangleright \, \tan\beta = 1$
- $c_{\chi} = 0$

•
$$\cos(\beta - \alpha) = 0$$

•
$$M_H = M_{H^{\pm}} = 500 \text{ GeV}$$

Choose: $C_5 = 0.37 \rightarrow m_{\chi} \approx 70 \text{ GeV}$

 $M_A, M_H, M_{H^{\pm}}, \tan\beta, \cos(\beta - \alpha), c_{\chi}, c_5, m_{\chi}$

1609.04026 (CMB), 1706.01505 (CTA Prospects)

•

Valentin Tenorth

Collider Channels

Intital State Radiation: $\texttt{mono-jet} > \texttt{mono-}\gamma > \texttt{mono-}Z > \texttt{mono-}h$

Mono-jet

 $t\bar{t}A$ Production

Mono-Z Resonantly enhanced if $M_H \ge M_A + M_Z$

Valentin Tenorth

CMS Mono-Z at $12.9 \mathrm{fb}^{-1}$ cms pas exo-16-038

DM signal via t-loop only

Cuts:

Ć

Preselection	Variable	Requirements
	p_T^ℓ	>25/20 GeV (electrons)
		>20 GeV (muons)
	Dilepton mass	$m_{\rm Z} - 15 < m_{\rm H} < m_{\rm Z} + 10$
	Jet counting	≤ 1 jets with $p_T^j > 30 \text{ GeV}$
	$p_T^{\ell\ell}$	>60 GeV
	3rd-lepton veto	$p_T^{e,\mu} > 10 \text{ GeV}$
	Top quark veto	0 b jets with $p_T > 20 \text{ GeV}$
Selection	$\Delta \phi_{\ell \ell, \vec{v}, miss}$	> 2.8 rad
	$ E_T^{\text{miss}} - p_T^{\ell \ell} / p_T^{\ell \ell}$	< 0.4
	$\Delta \phi(\text{jet}, E_T^{\text{miss}})$	> 0.5 rad
	E ^{miss}	>100 GeV
	τ _h veto	0 $\tau_{\rm h}$ candidates with $p_{\rm T}^{\tau} > 18 {\rm GeV}$

Implementation checked against $ZZ \rightarrow ee + E_T^{\text{miss}}$

Collider Bounds

- $m_{\chi} = 70 \text{ GeV}$
- $C_5 = 0.37$
- $c_{\chi} = 0$

•
$$\cos(\beta - \alpha) = 0$$

• $M_H = M_{H^{\pm}} = 500 \text{ GeV}$

Resonantly enhanced Mono-Z production provides the strongest bounds! CMS PAS EXO-16-038 ($Z + E_T^{miss}$), CMS PAS EXO-16-005 ($t\bar{t} + E_T^{miss}$), ATLAS-CONF-2017-060 ($j + E_T^{miss}$)

•

Summary and Outlook

- Consistent model for Pseudoscalar-mediator @LHC
- Universal signal: Resonantly enhanced Mono-Z
- Constraints lead to similar parameter region
- Left over region testable by future LHC runs!
- Also relevant $H^{\pm} \rightarrow t W^{\pm} A \rightarrow t W^{\pm} \bar{\chi} \chi$ [Talk by P.Pani] 1712.03874

Summary and Outlook

- Consistent model for Pseudoscalar-mediator @LHC
- Universal signal: Resonantly enhanced Mono-Z
- Constraints lead to similar parameter region
- Left over region testable by future LHC runs!
- Also relevant $H^{\pm} \rightarrow t W^{\pm} A \rightarrow t W^{\pm} \bar{\chi} \chi$ [Talk by P.Pani] 1712.03874

Thanks for your attention!

Final Result

Mono-Z searches have the potential to exclude almost all of the parameter space!

Examples of possible UV completions

Additional SM singlet pseudoscalar ¹

$$\mathcal{L} = \sum_{i,j=1}^{3} y_{ij}^{u} \bar{Q}_{i} H_{u} u_{j} + \sum_{i,j=1}^{3} y_{ij}^{d} \bar{Q}_{i} H_{d} d_{j} + \sum_{i,j=1}^{3} y_{ij}^{l} \bar{L}_{i} H_{d} l_{j} + \kappa a H_{u}^{\dagger} H_{d} + c_{a} a \bar{\chi} \gamma_{5} \chi + h.c.$$

Additional electroweak fermion doublet $\psi = (\chi^+ \chi^0)^{-2}$

$$\mathcal{L} = \sum_{i,j=1}^{3} y_{ij}^{u} \bar{Q}_{i} H_{u} u_{j} + \sum_{i,j=1}^{3} y_{ij}^{d} \bar{Q}_{i} H_{d} d_{j} + \sum_{i,j=1}^{3} y_{ij}^{l} \bar{L}_{i} H_{d} l_{j} + c_{1} \bar{\psi} H_{u}^{\dagger} \chi + c_{2} \bar{\psi} \tilde{H}_{d} \chi + h.c.$$

¹M. Bauer, U. Haisch, F. Kahlhoefer, 1701.07427 ²A. Freitas, S. Westhoff, J. Zupan, 1506.04149 Consistent DM@LHC • Valentin Tenorth

C

Unitarity, Perturbativity & Stability Requirements

 $\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} > 0$

Branching Ratios A

Branching Ratios H

Branching Ratios H^{\pm}

