Prospects of Higgs portal DM models at future colliders

Jinmian Li

Korea Institute for Advanced Study

Based on B. Dutta, T. Kamon, P. Ko, JL, arXiv: 1705.02149, 1712.05123

Apr. 5th, 2018

Dark Matter @ LHC 2018

Heidelberg University

1 Status of LHC searches for Higgs portal DM model

2 Prospects of searches at future colliders

- 500 GeV ILC
- 100 TeV FCC-pp/SppC

Scalar mediated simplified model

$$\mathcal{L}_{H} \ni -g_{\chi} H \bar{\chi} \chi - \sum_{f} \frac{g_{v} y_{f}}{\sqrt{2}} H \bar{f} f$$
$$\mathcal{L}_{A} \ni -ig_{\chi} A \bar{\chi} \gamma^{5} \chi - \sum_{f} \frac{ig_{v} y_{f}}{\sqrt{2}} A \bar{f} \gamma^{5} f$$

- Projected CMS invisible Higgs search in VBF
- Constraint on scalar is weaker than pseudoscalar, due to smaller cross section and a softer E_T^{miss} .
- Requires sizeable coupling for detection $(g_v = g_{\chi} = g)$, may not realistic, e.g. $\Gamma > m_{H/A}$.
- SM gauge symmetry is not conserved if H/A is an singlet.

$$\phi \cdot \bar{f}f = \phi \cdot (\bar{f}_L f_R + \bar{f}_R f_L)$$

DM@LHC 3 / 20

Higgs portal dark matter model

$$\mathcal{L}_{\rm FDM} \ni -g_{\chi} S \bar{\chi} \chi - \lambda_{HS} H^{\dagger} H S^2 - \mu_0^3 S$$
$$-\mu_1 S H^{\dagger} H - \frac{\mu_2}{3!} S^3 - \frac{\lambda_S}{4!} S^4$$
$$\mathcal{L}_{\rm FDM}^{\rm int} \ni -(H_1 \cos \alpha + H_2 \sin \alpha) \sum_f \frac{m_f}{v_h} \bar{f} f$$
$$+ g_{\chi} (H_1 \sin \alpha - H_2 \cos \alpha) \ \bar{\chi} \chi$$

- Recast of the CMS invisible Higgs search in Mono-jet.
- $g_{\chi} = 3$, $\sin \alpha = 0.3$, $m_{\chi} = 80$ GeV (Throughout the talk.)
- Production limited by SM Higgs-fermion couplings.
- Interference between two mediators (reduce the sensitivity at low M_{H_2}).
- All points way below the current LHC sensitivity.

P. Ko, J. Li. arXiv:1610.03997

Status of LHC searches for Higgs portal DM model

2 Prospects of searches at future colliders

- 500 GeV ILC
- 100 TeV FCC-pp/SppC

3 Conclusion

Minimal gauge invariant models: FDM, VDM and SDM

Lagrangians:

•
$$\mathcal{L}_{\text{FDM}} = \mathcal{L}_{\text{SM}} + \bar{\chi}(i\partial - m_{\chi} - g_{\chi}S)\chi + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \frac{1}{2}m_{0}^{2}S^{2} - \lambda_{HS}H^{\dagger}HS^{2} - \mu_{0}^{3}S - \mu_{1}SH^{\dagger}H - \frac{\mu_{2}}{3!}S^{3} - \frac{\lambda_{S}}{4!}S^{4}$$

• $\mathcal{L}_{\text{VDM}} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi - \lambda_{\Phi}(\Phi^{\dagger}\Phi - \frac{v_{\phi}^{2}}{2})^{2} - \lambda_{H\Phi}(H^{\dagger}H - \frac{v_{h}^{2}}{2})(\Phi^{\dagger}\Phi - \frac{v_{\phi}^{2}}{2})$
• $\mathcal{L}_{\text{SDM}} = \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \frac{1}{2}m_{0}^{2}S^{2} - \lambda_{HS}H^{\dagger}HS^{2} - \frac{\lambda_{S}}{4!}S^{4}$

Interaction Lagrangians:

$$\mathcal{L}_{\text{FDM}}^{\text{int}} = -(H_1 \cos \alpha + H_2 \sin \alpha) \left[\sum_f \frac{m_f}{v_h} \bar{f} f - \frac{2m_W^2}{v_h} W_{\mu}^+ W^{-\mu} - \frac{m_Z^2}{v_h} Z_{\mu} Z^{\mu} \right] \\ + g_{\chi} (H_1 \sin \alpha - H_2 \cos \alpha) \bar{\chi} \chi$$

$$\mathcal{L}_{\text{VDM}}^{\text{int}} = -(H_1 \cos \alpha + H_2 \sin \alpha) \left[\sum_f \frac{m_f}{v_h} \bar{f} f - \frac{2m_W^2}{v_h} W_{\mu}^+ W^{-\mu} - \frac{m_Z^2}{v_h} Z_{\mu} Z^{\mu} \right] \\ - \frac{1}{2} g_V m_V (H_1 \sin \alpha - H_2 \cos \alpha) V_{\mu} V^{\mu}$$

$$\mathcal{L}_{\text{SDM}}^{\text{int}} = h \left[\sum_f \frac{m_f}{v_h} \bar{f} f - \frac{2m_W^2}{v_h} W_{\mu}^+ W^{-\mu} - \frac{m_Z^2}{v_h} Z_{\mu} Z^{\mu} \right] + \lambda_{HS} v_h hS^2$$

Jinmian Li (KIAS)

General feature

Jinmian Li (KIAS)

Higgs portal DMs at colliders

20

The dominant DM production process:

$$e^+e^- \to Z(\to ff) \ H_{1,2}^{(*)}(\to DD)$$

DM pair four-momentum:

$$P_{DD}^{\mu} = P_{e^+}^{\mu} + P_{e^-}^{\mu} - P_Z^{\mu} = (\sqrt{s} - E_Z, -\vec{p}_Z)$$

DM pair invariant mass:

$$m_{DD}^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

Features of DM production at the ILC

Dominant background processes:

Discovery prospects of the hadronic channel (FDM)

Preselection cuts:

- Lepton veto
- Exactly two jets
- $E_T^{\text{miss}} > 50 \text{ GeV}$

Boosted decision tree analysis with inputs:

 $m_{DD}, p_T(j_1), p_T(Z), E_T^{\text{miss}}, \Delta \phi^{\min}, p_T(j_2), m_{jj}$

Jinmian Li (KIAS)

Higgs portal DMs at colliders

10 / 20

Discovery prospects of the hadronic channel (FDM)

	FDM200	FDM300	FDM400	FDM500
σ^0 [fb]	1.643	0.9214	0.4221	0.2526
$\epsilon^{ m pre}$	0.796	0.717	0.655	0.698
BDT	0.3615	0.2132	0.1929	0.2129
$N_S/1000 { m ~fb^{-1}}$	697.8	410.5	148	102
$N_B/1000 { m ~fb^{-1}}$	2248.5	11453.5	12736	10898
$N_S/\sqrt{N_S+N_B}$	12.85	3.769	1.31	0.97

1 Status of LHC searches for Higgs portal DM model

Prospects of searches at future colliders
500 GeV ILC

• 100 TeV FCC-pp/SppC

Signal: mono-jet?

Signal: mono-jet?

Jinmian Li (KIAS)

Higgs portal DMs at colliders

13 / 20

DM@LHC

M. R Buckley et.al.;

The dominant DM production process:

Dominant background processes:

mmant	background processes.		$t(\rightarrow b\ell\nu)t(\rightarrow b\ell\nu) + DM$
	Cross section (NLO)	FDM200	34.2 fb
$\overline{t}t$	1316.5 pb	FDM300	18.7 fb
$\overline{t}tW$	20.5 pb	FDM400	14.8 fb
$\bar{t}tZ$	64.2 pb	FDM500	12.5 fb

Features of DM spin

DM@LHC 15 / 20

Analysis strategy

- Preselection: Exactly two opposite sign lepton and at least one b jet in the final state.
- $m_{\ell\ell} \notin [85, 95]$ GeV.

- $E_T^{miss} > 150$ GeV.
- $m_{T_2}(l, l) > 150$ GeV.

Cuts flow for SM processes and Signals

Backgrounds	$\overline{t}t$	$\bar{t}tW$	$\bar{t}tZ$
Cross section	$1316.5 { m ~pb}$	$20.5 \ \mathrm{pb}$	64.2 pb
Presections	63.76 pb	351.8 fb	1.9 pb
$m_{\ell\ell} \notin [85, 95] \text{ GeV}$	59.8 pb	330.4 fb	1.05 pb
$E_T^{miss} > 150 \text{ GeV}$	$17.76 { m \ pb}$	$69.61~\mathrm{fb}$	$261.14 { m ~fb}$
$m_{T_2}(l,l) > 150 \text{ GeV}$	23.83 fb	$1.92 {\rm ~fb}$	$32.1~{\rm fb}$

Signals	FDM200	FDM300	FDM400	FDM500
Cross section	34.2 fb	$18.7 \mathrm{~fb}$	14.8 fb	12.5 fb
Presections	7.86 fb	3.99 fb	$3.05~{\rm fb}$	2.55 fb
$m_{\ell\ell} \notin [85,95] \text{ GeV}$	7.47 fb	3.82 fb	2.92 fb	2.44 fb
$E_T^{miss} > 150 { m ~GeV}$	4.17 fb	2.44 fb	$1.93 { m ~fb}$	$1.63~{ m fb}$
$m_{T_2}(l,l) > 150 \text{ GeV}$	$0.87~{ m fb}$	$0.62~{ m fb}$	$0.54~{ m fb}$	$0.47~{ m fb}$
$\mathcal{L}^{95\%} [{ m fb}^{-1}]$	305	602	793	1047

Discovery prospects

Binned log-likehood analysis:

$$\mathcal{L}(\text{data}|\mathcal{H}_{\alpha}) = \prod_{i} \frac{t_{i}^{n_{i}} e^{-t_{i}}}{n_{i}!}, \quad \mathcal{Q} = -2\log\left(\frac{\mathcal{L}(\text{data}|\mathcal{H}_{\alpha})}{\mathcal{L}(\text{data}|\mathcal{H}_{0})}\right)$$

Spin characterization $(E_T^{miss} \text{ and } \cos(\theta_{\ell\ell}))$

Two dimensional binned log-likelihood test: $\mathcal{L}(\text{data}|\mathcal{H}_{\alpha}) = \prod_{i,j} \frac{t_{ij}^{n_{ij}} e^{-t_{ij}}}{n_{ij}!}$

Discriminating FDM and SDM (E_T^{miss} and $\cos(heta_{\ell t})$)

- The gauge invariant Higgs portal DM models for FDM and VDM require at least two mediators, while that of SDM only need one.
- At the ILC, $m_{H_2} \lesssim 300$ GeV can be probed at more than 3- σ level.
- At the 100 TeV p-p collider, (1)All benchmark points should be probable at integrated luminosity of O(100) fb⁻¹ at 100 TeV p-p collider; (2) The spin discriminations for our benchmark points are possible at O(10) ab⁻¹. (3)Those values are all below the targets luminosity of FCC-hh, which is ~ 20 ab⁻¹.

Backup.

Benchmark points

• The relevant parameters in FDM for collider search: $g_{\chi} = 3$, $\sin \alpha = 0.3$, $m_{\chi} = 80$ GeV and $m_{H_2} = (200, 300, 400, 500)$ GeV. $\Gamma_{\min}^{\text{FDM}}(H_2) = \Gamma(H_2 \rightarrow \chi \chi) + \Gamma(H_2 \rightarrow WW/ZZ) + \Gamma(H_2 \rightarrow ff)$ $= \cos^2 \alpha \cdot g_{\chi}^2 \frac{m_{H_2}}{8\pi} (1 - \frac{4m_{\chi}^2}{m_{H_2}^2})^{3/2} + \sin^2 \alpha \cdot \frac{G_{\mu} m_{H_2}^3}{16\sqrt{2\pi}} \delta_V \sqrt{1 - 4\frac{m_V^2}{m_{H_2}^2}} (1 - 4\frac{m_V^2}{m_{H_2}^2} + 12\frac{m_V^4}{m_{H_2}^4})$ $+ \sin^2 \alpha \cdot (\frac{m_f}{v})^2 \frac{3m_{H_2}}{8\pi} (1 - \frac{4m_f^2}{m_{H_2}^2})^{3/2}$,

where f is the SM fermion, V = Z, W and $\delta_V = 1(2)$ for $Z(W^{\pm})$.

• Parameters for the vector DM production are chosen accordingly: $\sin \alpha = 0.3$, $m_V = 80$ GeV and g_V is chosen such that the total decay width of H_2 is the same as benchmark points of FDM.

$m_{H_2} \; [\text{GeV}]$	200	300	400	500
$\Gamma_{\min}(H_2)$ [GeV]	14.2	60.1	103.0	144.5
g_V	3.53	3.07	2.37	1.91

• Fix $m_S = 80$ GeV and take appropriate λ_{HS} such that the production cross section of the signal process is the same with that in the FDM.

Jinmian Li (KIAS)

Discovery prospects of the hadronic channel

Kinematic distributions:

$$\Delta \phi^{\min} = \min_{i=1,2} \Delta \phi(p_T^{\max}, p(j_i))$$

The same preselection and BDT cuts as used for FDM the benchmark point FDM200 (FDM300) are applied to the corresponding benchmark point SDM200 (SDM300) and VDM200 (VDM300).

	SDM200	SDM300	VDM200	VDM300
$\sigma^0 \; [{ m fb}]$	1.643	0.9214	1.734	0.8674
$\epsilon^{ m pre}$	0.7875	0.7875	0.801	0.711
$N_S/1000 \text{ fb}^{-1}$	447	322.3	726	363.5
S	4.4	3.3	0.59	0.44

SDM:
$$\delta\chi^2 = \sum_{i=1}^{5} \left(\frac{N_i^{\text{FDM}+\text{SM}} - N_i^{\text{SDM}+\text{SM}}}{\sqrt{N_i^{\text{FDM}+\text{SM}}}}\right)^2$$

VDM: $\mathcal{S} = |N_S^{\text{FDM}} - N_S^{\text{VDM}}|/\sqrt{N_B}$

Using only the distribution of E_T^{miss} : \mathcal{H}_0 is the FDM + SM, \mathcal{H}_α can be VDM/SDM + SM

