

Dark Sector Searches at BESII

YUPING GUO ON BEHALF OF THE \mathbb{H} COLLABORATION

Dark Matter @LHC 2018 Workshop

April 3-6, 2018 Heidelberg Germany

DARK MATTER

Rotation curve of the typical spiral galaxy M 33

Numerous indirect astrophysical and cosmological observations point to the presence of dark matter

https://en.wikipedia.org/wiki/Galaxy_rotation_curve

DARK MATTER

Rotation curve of the typical spiral galaxy M 33

- Numerous indirect astrophysical and cosmological observations point to the presence of dark matter
- Dark matter: a factor of 5 over normal matter
- Gravitational interaction
- Constitution remains unknown

DARK SECTOR

Consisting of (light) particles do not interact with the known strong, weak, or electromagnetic forces

Portal	Particles	Operator(s)
"Vector"	Dark photons	$-\frac{\epsilon}{2\cos\theta_W}B_{\mu u}F^{\prime\mu u}$
"Axion"	Pseudoscalars	$\frac{a}{f_a}F_{\mu\nu}\widetilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i\mu\nu}\widetilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$
"Higgs"	Dark scalars	$(\mu S + \lambda S^2) H^{\dagger} H$
"Neutrino"	Sterile neutrinos	$y_N LHN$

R. Essig, et al, arXiv:1311.0029

DARK PHOTON (γ')

- New Abelian gauge group U(1) force carrier
- Kinematic mixing with SM U(1) with mixing coefficient ε

B. Holdom, PLB 166,196 (1986)

- Typical mix strength: 10⁻²~10⁻⁵, could be smaller
- Expected mass scale: MeV/c² ~ GeV/c²
- Could explain large number of astrophysical anomalies

N. Arkani-Hamed et al., PRD 79, 015014 (2009) S. Andreas, A. Ringwald arXiv:1008.4519 (2010)

Also deviation on muon anomaly $(g-2)_{\mu}$

M. Pospelov, PRD 80,095002 (2009)

Beijing Electron Positron Collider-II

Storage Ring

ES

tector

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

inear Accelerc

Beijing Electron Positron Collider-II

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

BESIII DATA SET

World largest data sample on J/ ψ , ψ ' ψ (3770), unique data sample at XYZ region

DARK PHOTON SEARCH(I)

- 2.93 fb⁻¹ ψ(3770) data sample
- Initial State Radiation process:

 $e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}\mu^+\mu^-$

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}e^+e^-$$

APS/Alan Stonebreaker

■ Search for narrow structure on top of the continuum QED background ($e^+e^- \rightarrow \gamma_{ISR} l^+ l^-$) BESIII, PLB 774,252 (2017)

MASS SPECTRUM

BESIII, PLB 774,252 (2017)

Cover mass region: 1.5 GeV/ $c^2 \sim 3.4$ GeV/ c^2

- <1.5 GeV/ c^2 : $\pi^+\pi^-$ background dominates
- >3.4 GeV/c²: hadronic qq-bar process

NUMBER OF SIGNAL EVENTS

BESIII, PLB 774,252 (2017)

- Fit QED background with 4th order polynomial function
- No peaking structure observed in (data-fit)
- 90% confidence level limit obtained with profile likelihood approach, systematic uncertainty included

W. Rolke et al., NIM A 551, 493 (2005)

Combined statistical significance less than 3 σ

CALCULATION OF ε

DARK PHOTON SEARCH(II)

- (1310.6±7.0)×10⁶ J/ψ events
- Electromagnetic (EM) Dalitz decay:

•
$$J/\psi \to \gamma' \eta \to e^+ e^- \eta$$

 $\eta \to \gamma \gamma \text{ or } \eta \to \pi^+ \pi^- \pi^0$

•
$$J/\psi \rightarrow \gamma' \eta' \rightarrow e^+ e^- \eta'$$

 $\eta' \rightarrow \gamma \pi^+ \pi^- \text{ or } \eta' \rightarrow \eta \pi^+ \pi^-$

DARK PHOTON SEARCH(II)

- (1310.6±7.0)×10⁶ J/ψ events
- Electromagnetic (EM) Dalitz decay:

•
$$J/\psi \to \gamma' \eta \to e^+ e^- \eta$$

 $\eta \to \gamma \gamma \text{ or } \eta \to \pi^+ \pi^- \pi^0$

•
$$J/\psi \rightarrow \gamma' \eta' \rightarrow e^+ e^- \eta'$$

 $\eta' \rightarrow \gamma \pi^+ \pi^- \text{ or } \eta' \rightarrow \eta \pi^+ \pi^-$

All particles reconstructed, η mass window: [0.52,0.57] GeV/ c^2 η' mass window: [0.93,0.98] GeV/ c^2

MASS SPECTRUM η

- Fit M(e⁺e⁻) spectrum:
 - 0.01-2.40 GeV/c²
 - Signal:
 - two Crystal Ball functions (2MeV step)
 - Background:
 - Chebyshev polynomial + Exponential functions
- Exclude ρ/ω and φ mass regions
- No clear peaking structure observed

MASS SPECTRUM η'

- Fit M(e⁺e⁻) spectrum:
 - 0.1-2.1 GeV/c²
 - Signal:

two Crystal Ball functions (2MeV step)

- Background:
- Chebyshev polynomial + Exponential functions
- Exclude ρ/ω and φ mass regions
 - No clear peaking structure observed

NUMBER OF SIGNAL η

Local significance less than
 3σ in each mass point

NUMBER OF SIGNAL η'

Maximum local significance
 3.1σ

UPPER LIMIT OF PRODUCT BR @ 90% C.L.

UPPER LIMIT OF PRODUCT BR @ 90% C.L.

Divide out
$$B(\gamma' \to e^+e^-) = \frac{\Gamma_{ee}}{\Gamma_{tot}} = \frac{\Gamma_{ee}}{\Gamma_{ee} + \Gamma_{\mu\mu} \cdot (1 + R(\sqrt{s}))}$$
 B. Batell, M. Pospelov, and A. Ritz PRD 79, 115008 (2009))

16

CALCULATION OF ε

CALCULATION OF ε

SUMMARY

- Dark photon search at BESIII:
 - ISR process and EM Dalitz decay process
 - In 0.01 GeV/ c^2 ~ 3.4 GeV/ c^2 , significance less than 3σ
 - Mixing parameters: 10⁻²-10⁻⁴
- More study related to dark sector
 - Invisible decay of $\eta^{(\prime)}$, ω , ϕ meson study PRD 87, 012009 (2013)
 - CP-odd Higgs boson search through radiative decay of J/ψ
 PRD 93, 052005 (2016)
 PRD 85, 092012 (2012)

