# SEARCH FOR THE LEPTON FLAVOUR VIOLATING DECAY $B \rightarrow e\mu$

#### **GUIDO ANDREASSI**







## MOTIVATIONS

- Processes that are strongly suppressed (forbidden) in the SM might be enhanced by new mediating particles
- LFV predicted by a large variety of alternative models (Lepto-Quarks, new gauge Z'...)
- Such particles can enter SM diagrams as virtual particles ⇒ can indirectly observe mediators unaccessible to direct searches



# **EXPERIMENTAL SCENARIO**

- [1] <u>Phys. Rev. Lett. 115, 111803</u>
- [2] <u>JHEP 08 (2017) 055</u>
- [3] Phys. Rev. Lett. 113, 151601
- [4] <u>arXiv: 1609.08895v2</u>
- [5] <u>Phys. Rev. Lett. 114, 091801</u>
- [6] Phys.Rev.Lett. 111, 141801
- Recent hints of LNU effects [1,2,3] open to new scenarios
- Potential links between LNU and LFV [4,5] entail a renewed interest on the subject

$$\begin{aligned} \mathcal{B}(B \to K\mu^{\pm}e^{\mp}) &\sim 3 \cdot 10^{-8} \left(\frac{1-R_K}{0.23}\right)^2, \ \mathcal{B}(B \to K(e^{\pm},\mu^{\pm})\tau^{\mp}) &\sim 2 \cdot 10^{-8} \left(\frac{1-R_K}{0.23}\right)^2 \\ \frac{\mathcal{B}(B_s \to \mu^+e^-)}{\mathcal{B}(B_s \to \mu^+\mu^-)_{\rm SM}} &\sim 0.01 \left(\frac{1-R_K}{0.23}\right)^2, \quad \frac{\mathcal{B}(B_s \to \tau^+(e^-,\mu^-))}{\mathcal{B}(B_s \to \mu^+\mu^-)_{\rm SM}} &\sim 4 \left(\frac{1-R_K}{0.23}\right)^2. \end{aligned}$$
[arXiv: 1609.08895v2]

Previous best limits are from LHCb, with 2011 (1 fb<sup>-1</sup>) data, published in 2013 [6]:

$$\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 2.8(3.7) \times 10^{-9} @90\% (95\%) C.L$$
  
 $\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp}) < 1.1(1.4) \times 10^{-8} @90\% (95\%) C.L$ 

## **OUR ANALYSIS**

- Search for both B<sup>0</sup><sub>s</sub> and B<sup>0</sup><sub>d</sub> mesons decaying to an electron and a muon with opposite charge
- B mass region [5100, 5500] MeV blind until the analysis strategy was finalised

WITH RESPECT TO THE PREVIOUS PUBLICATION FROM LHCB:

- Present analysis on Run1 data (2011+2012, 3 fb<sup>-1</sup>)
- Improved candidate selection strategy and invariant mass fit
- Benefits from improved reconstruction of electrons



# BREMSSTRAHLUNG

The emission of bremsstrahlung photons by electrons has sizeable fallouts on some aspects of the analysis.

Ideally, brem photons clusters in the ECAL are identified and their energy is *recovered* by assigning it back to the parent electron.

#### In practice:

- some real γ are missed, some wrong γ are added
- resolution on the energy of the γ affects electron's P, PT quality of the vertices...



Selection efficiencies and mass shapes depend on whether or not a brem photon was added to the electron in the reconstruction (brem categories)

# SELECTION

- Trigger efficiencies in brem categories
- BDT response modelled to be flat on signal (MC) (and peaked on zero for bkg)
- Response on data evaluated on  $B^0 \rightarrow K\pi$ , as a proxy channel
  - Unbiased for trigger selection
  - Corrected for PID selection efficiency
  - Corrected for brem category
- Analysis binned in 8 BDT bins
- PID efficiencies split in these bins and in brem category



plots from JHEP03 (2018) 078]



Ratio of the two measured BF found in excellent agreement with PDG

$$R_{\text{norm}} = \frac{N_{B^0 \to K^+ \pi^-} \times \varepsilon_{B^+ \to J/\psi K^+}}{N_{B^+ \to J/\psi K^+} \times \varepsilon_{B^0 \to K^+ \pi^-}} = 0.332 \pm 0.002 \,(\text{stat}) \pm 0.020 \,(\text{syst})$$

#### MASS FIT

- Mass shape of B<sub>d</sub> and B<sub>s</sub> from simulation
  - PDF: double-sided Crystal Ball



• Correct the core width of the distribution for data/MC differences using  $J/\psi \rightarrow ee$  and  $J/\psi \rightarrow \mu\mu$  appropriately combined to reproduce  $e\mu$  final state

## MASS FIT (2)

- Combinatorial: exponential pdf
- Exclusive backgrounds ( $B^0 \rightarrow \pi \mu v$  and  $\Lambda^0_{\ b} \rightarrow \mu v$ ): nonparametric functions from simulation, with total yields constrained to expected
- Simultaneous fit in 7x2 bins (most background-like BDT bin is excluded)
- No significant excess observed

icant excess observed mostly from PDF tions, yields of the ls, shape of BDT response, ficiencies. act on the limit <5% This is not an independent fit, just D Systematics mostly from PDF parametrisations, yields of the backgrounds, shape of BDT response, selection efficiencies. Overall impact on the limit <5%

16 Data LHCb — Total 0.7≤BDT≤1.0 ····· Combinatorial  $\cdots \Lambda_{\rm b}^0 \rightarrow p \mu \bar{\nu}$ 10  $\cdots B^0 \rightarrow \pi^- \mu^+ \nu$  $\cdots B^0_s \to e^{\pm} \mu^{\mp}$  $\cdots B^0 \rightarrow e^{\pm} \mu^{\mp}$ [JHEP03 (2018) 078] 2 the sum of the last 3 bins. 0 5000 5200 5400 5600 5800  $m_{e^{\pm}u^{\mp}}$  [MeV/ $c^2$ ]

10





- Upper limits with pseudo-experiments using
   CLs with Likelihood ratio
- Large lifetime difference between the two B<sub>s</sub> mass eigenstates affects efficiencies. Limit in two assumptions: 100% heavy, 100% light
- Scans performed independently on B<sub>s</sub> and B<sub>d</sub>, fixing each time the other yield to the best fit

| channel                                | expected                  | observed                  |   |
|----------------------------------------|---------------------------|---------------------------|---|
| $\mathcal{B}(B^0_s\!\to e^\pm\mu^\mp)$ | $5.0(3.9) \times 10^{-9}$ | $6.3(5.4) \times 10^{-9}$ | * |
| $\mathcal{B}(B^0\!\to e^\pm\mu^\mp)$   | $1.2(0.9) 	imes 10^{-9}$  | $1.3(1.0) \times 10^{-9}$ |   |

\* for heavy eigenstate. For light:  $\mathcal{B}(B_s^0 \to e^{\pm} \mu^{\mp}) < 7.2 \, (6.0) \times 10^{-9} \text{ at } 95\% \, (90\%) \text{ CL}.$ 





# **CONCLUSIONS & OUTLOOK**

- The analysis presented here as recently been published [JHEP03 (2018) 078]
- No evidence of LFV
- New world's best UL on both  $B_d \rightarrow e\mu$  and  $B_s \rightarrow e\mu$
- LHC Run 2 data still to be analysed, could provide significantly stronger limits or open to new perspectives
- Even more potentially interesting data to come after the LHCb detector upgrade (Run3)!
- More LFV searches ongoing at LHCb, many results out soon!





# THE LHCB EXPERIMENT

- Single-arm forward spectrometer (2< $\eta$ <5)
- Designed to study b and c quarks physics
- High resolution on decay vertex of flying b hadrons and momenta
- Good particle identification





#### **MASS FITS**



#### MASS FITS (2)



# **EXCLUSIVE BACKGROUNDS**



• Shapes shown are BDT bin 2 [0.25, 0.4], without brem recovery



#### **PID STRATEGY AND EFFICIENCIES**



PID efficiencies for Bs2emu without brem recovery in BDT bins for 2012



• Optimisatised with respect to  $B^0_{(s)} \rightarrow h^+ h^-$  double misID, with figure of merit (FOM):

$$\mathsf{FOM} = \sum_{\substack{B_{d,s}^{0} \to \mathsf{hh}}} \frac{f_{d,s}}{f_{d}} \mathcal{B}(B_{d,s}^{0} \to \mathsf{hh}) \epsilon_{\mathsf{hh} \to e\mu}^{\mathsf{PID}}$$

• Same signal PID efficiency wrt old LHCb analysis  $(\simeq 80\%)$ , but lower misID rate





## **PEAKING BACKGROUNDS – B \rightarrow HH**

#### Main method

- Estimation of expected amount of  $B^0_{(s)} \rightarrow h^+h^-$  is determined using  $B^0_{(s)} \rightarrow h^+h^-$  MC weighted with PIDCalib efficiencies
- Normalise with respect to  $B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+$
- Expected result shown here in full mass, BDT and HasBremAdded range and is negligible

#### **Cross-check**

- Single misID determined in  $B^0_{(s)} \rightarrow h^+ h^-$  data
- Electron PID on one of the tracks and hadron PID on other
- Additional misID efficiency with main method
- Result compatible



#### **MULTIVARIATE CLASSIFIER**

- Boosted Decision Tree (BDT) from TMVA
- Purpose: separate two-body B decay without any PID assumptions from combinatorial background
- 12 input variables, containing *B* kinematics and topology, vertrex quality and track isolation



#### **EFFICIENCIES – PID**

- Determined using PIDCalib
- Reweighting to signal MC in bins of BDT and HasBremAdded with track  $p_T$ ,  $\eta$  (and nSPDHits for electron to data nSPDHits distribution)
- $B^0 \rightarrow K^+ \pi^-$  uses p and  $\eta$  binnings



# **EFFICIENCIES – TRIGGER**

- TISTOS for LOxHlt1
- Using TIS sample of
- Reweight efficiencies to IP and  $E_T$  (for electron) or  $p_T$  (for muon) to account for biases
- Hlt2 efficiencies from MC



 $\begin{array}{ll} B^0_{d,s} \to e^{\pm} \mu^{\mp} \; (\texttt{HasBremAdded} == 0) & 0.726 \pm 0.002 \, (\texttt{stat}) \pm 0.015 \, (\texttt{syst}) \\ B^0_{d,s} \to e^{\pm} \mu^{\mp} \; (\texttt{HasBremAdded} == 1) & 0.621 \pm 0.002 \, (\texttt{stat}) \pm 0.015 \, (\texttt{syst}) \\ B^+ \to J/\psi(\mu^+\mu^-)K^+ & 0.758 \pm 0.006 \\ B^0 \to K^+\pi^- & 0.212 \pm 0.002 \end{array}$ 

