

Can we discover a light singlet-like NMSSM Higgs boson at the LHC?

C. Beskidt, W. de Boer, D. Kazakov

arXiv:1712.02531

Institut für Experimentelle Teilchenphysik

Parameters MSSM vs. NMSSM

NMSSM has one additional Higgs singlet

 \rightarrow additional terms in superpotential leads to more free parameters and leads to modification in the Higgs and neutralino sector

Problem with scanning NMSSM parameter space

large parameter space

parameters are highly correlated, so random scan of parameter space very inefficient without correlation matrix

we do not know the correlation matrix

How to solve?

Idea: if we would have measured all the Higgs masses, would we be able to determine the parameters?

Result: yes, but not necessarily a unique solution

χ^2 Function has no unique solution

In NMSSM the mixing with singlet increases Born term by large couplings at small $tan\beta$ (Region I) or by a combination of small couplings and large $tan\beta$ (Region II)

Region I: λ - κ large, tan β small \rightarrow large NMSSM specific contribution

Region II: λ - κ small, tan β large \rightarrow CMSSM like

Idea: scan Higgs mass space instead of parameters

Why: Higgs masses hardly correlated and more constraints, if we assume the decoupling limit with all heavy Higgs masses to be close to degenerate

BRs for light (singlet-like) Higgs boson

Large coupling to down-type fermions \rightarrow dominant decay into b quarks as expected in the SM.

BRs for light (singlet-like) Higgs boson

MSSM-like Region different BRs compared to SM due to zero crossing of S_{11} leading to broad allowed bands for BRs.

Couplings to fermions and allowed range for Higgs mixing elements

 S_{11} large and positive in Region I

 S_{11} almost zero due to zero crossing in Region II $\rightarrow tan\beta$ enhancement small compared to small S_{11} values

$$H_{i}t_{L}t_{R}^{c}: -\frac{h_{t}}{\sqrt{2}}S_{i2} \qquad h_{t} = \frac{m_{t}}{v\sin\beta}$$
$$H_{i}b_{L}b_{R}^{c}: -\frac{h_{b}}{\sqrt{2}}S_{i1} \qquad h_{b} = \frac{m_{b}}{v\cos\beta}$$
$$H_{i}\tau_{L}\tau_{R}^{c}: -\frac{h_{\tau}}{\sqrt{2}}S_{i1} \qquad h_{\tau} = \frac{m_{\tau}}{v\cos\beta}$$

Couplings to fermions and allowed range for Higgs mixing elements

S_{11} large and positive in Region I

 S_{11} almost zero due to zero crossing in Region II $\rightarrow tan\beta$ enhancement small compared to small S_{11} values

 $H_i t_L t_R^c : -\frac{h_t}{\sqrt{2}} S_{i2}$ $H_i b_L b_R^c : -\frac{h_b}{\sqrt{2}} S_{i1}$ $H_i \tau_L \tau_R^c : -\frac{h_\tau}{\sqrt{2}} S_{i1}$

Discovery potential for final states @14TeV

- **\tau \tau:** in both Regions
- **\gamma \gamma:** in both Regions
- **Z** γ : for $m_{H1} > 95$ GeV
- WW/ZZ: for $m_{H1} > 80/90$ GeV, small because of phase space
- Double Higgs Production
- $A_1A_1/\tilde{\chi}_1^0 \tilde{\chi}_1^0$: XS x BR compatible to SM decay H $\rightarrow \gamma\gamma$

Discovery potential for final states @14TeV

- **\tau_{\tau}:** in both Regions
- $\gamma\gamma$: in both Regions
- **Z** γ : for $m_{H1} > 95$ GeV
- WW/ZZ: for $m_{H1} > 80/90$ GeV, small because of phase space
- Double Higgs Production
- $A_1A_1/\tilde{\chi}_1^0 \tilde{\chi}_1^0$: XS x BR compatible to SM decay H → $\gamma\gamma$

See details for $\tau\tau$ and double Higgs Production on backup slides.

Other final states are small and $A_1A_1/\tilde{\chi}_1^0 \tilde{\chi}_1^0$ are only possible in a restricted parameter space where $m_{A1/\tilde{\chi}_1^0} < 0.5 m_{H1}$

NOTE: A_1 and $\tilde{\chi}_1^0$ masses are correlated, so both signatures happen in the same region of parameter space (see backup slides)

Summary

- Project 6D parameter space on 3D Higgs parameter space to allow efficient sampling with full coverage
- We find two regions where the Higgs mass constraints are fulfilled, called Region I (NMSSM-like) and II (MSSM-like)

The phase space of a light Higgs boson below 125 GeV allows comparable XS @14TeV with the observed SM Higgs boson in many discovery channels like $\tau\tau$ and $\gamma\gamma$ for both regions for the whole H_1 mass range although H_1 is singlet-like

We provide benchmark points (see backup, 1712.02531) for different H₁ masses and discovery channels which allows a detailed simulation and studies of the background and efficiencies

Backup

Region II: XS has large allowed range because of to zero crossing of S_{11} .

Possible double Higgs production channels (if kinematically accessible)

Lightest scalar Higgs boson
$$H_1 \rightarrow A_1 A_1$$

Second lightest scalar Higgs boson

$$\begin{array}{l} H_2 \rightarrow A_1 A_1 \\ H_2 \rightarrow H_1 H_1 \end{array}$$

Third scalar Higgs boson

$$\begin{array}{l} H_3 \rightarrow A_1 A_1 \\ H_3 \rightarrow H_1 H_1 \\ H_3 \rightarrow H_2 H_2 \\ H_3 \rightarrow H_1 H_2 \end{array}$$

Second pseudo-scalar Higgs boson

$$\begin{array}{c} A_2 \rightarrow A_1 H_1 \\ A_2 \rightarrow A_1 H_2 \end{array}$$

See backup slides for corresponding BR plots and upper limits Dominant A_1 decay modes in bb, $\tau\tau$ and MET see backup slides

Summary of Higgs boson branching ratios (SI)

For comparison of the discovery channels the XS x BR for the 125 GeV Higgs boson are for the ggf channel $\gamma\gamma$: 112 fb, ZZ: 1321 fb, Z γ : 76 fb, $\tau\tau$: 3090 fb and for the bbh channel $\gamma\gamma$: 1.3 fb, ZZ: 15.4 fb, Z γ : 0.8 fb, $\tau\tau$: 36 fb.

name	BR in %	$\sigma_{ggf} \times BR$ in fb	$\sigma_{bbh} \times BR$ in fb	BR in %	$\sigma_{ggf} \times BR$ in fb	$\sigma_{bbh} \times BR$ in fb
$\tau \tau$	89.3 - 94.4	455e3 - 481e3	6699 - 7078	7.1 - 7.7	5.6e3 - 6.0e3	149 - 161
$\gamma\gamma$	< 0.01	0.9 - 20	0.01 - 0.34	< 0.01	0.1 - 1.0	0.0 - 0.04
$Z\gamma$	-	-	-	-	-	-
ZZ	-	-	-	-	-	-
WW	-	-	-	-	-	-
A_1A_1	-	-	-	5.8 - 36.5	4.5e3 - 28.5e3	121 - 767
$\tilde{\chi}_0^1 \tilde{\chi}_0^1$	-	-	-	0.8 - 27.3	0.64e3 - 21.3e3	17 - 574
bb	87.2 - 87.9	484.3e3 - 488.2e3	0 - 6591	91.8 - 92.1	71.6e3 - 71.8e3	1926 - 1934
cc	0.2 - 7.7	1.1e3 - 39.1e3	17 - 575	0.04 - 0.1	30 - 110	17.2 - 575
gg	0.4 - 2.9	2.0e3 - 14.7e3	30.4 - 216	0.3 - 0.5	250 - 360	6.8 - 9.8
		$40-90 \mathrm{GeV}$			$90-120 \ \mathrm{GeV}$	
name	BR in %	$\sigma_{aaf} \times BR$	$\sigma_{LLL} \times BR$	PD in %	$\sigma \rightarrow BB$	
	-	991	- 00h		$\sigma_{ggf} \wedge BR$	$ O_{bbh} \times Dh$
ττ	8.3 - 9.1	500 - 600	140 - 154	BR III % 9.5 - 9.9	$5ggf \times BR$ 51 - 53	25.6 - 26.7
$\tau \tau \gamma \gamma$	8.3 - 9.1 < 0.01	500 - 600 0.08 - 0.46	140 - 154 0.019 - 0.12	9.5 - 9.9 0.0 - 0.02	51 - 53 0.01 - 0.09	25.6 - 26.7 0.0 - 0.05
au au au au au au au au au au	8.3 - 9.1 < 0.01	500 - 600 0.08 - 0.46	140 - 154 0.019 - 0.12	9.5 - 9.9 0.0 - 0.02 < 0.01	$5ggf \times BR$ 51 - 53 0.01 - 0.09 0.0 - 0.02	$\begin{vmatrix} & 0 & bbh \\ & 25.6 & -26.7 \\ & 0.0 & -0.05 \\ & 0.0 & -0.01 \end{vmatrix}$
$ \begin{array}{c} \tau \tau \\ \gamma \gamma \\ Z \gamma \\ Z Z \end{array} $	8.3 - 9.1 < 0.01 -	500 - 600 0.08 - 0.46 -	140 - 154 0.019 - 0.12	9.5 - 9.9 0.0 - 0.02 < 0.01 0.0 - 0.03	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$	$\begin{vmatrix} 0 & bbh \\ 25.6 & -26.7 \\ 0.0 & -0.05 \\ 0.0 & -0.01 \\ 0.0 & -0.075 \end{vmatrix}$
$ \begin{array}{c} \tau \tau \\ \gamma \gamma \\ Z \gamma \\ Z Z \\ W W \end{array} $	8.3 - 9.1 < 0.01 - < 0.01	$ \begin{array}{c} 500 - 600 \\ 0.08 - 0.46 \\ - \\ 0.0 - 0.01 \end{array} $	140 - 154 0.019 - 0.12 - < 0.01	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$ $0.0 - 1.0$	$\begin{vmatrix} 0 & bbh \\ 25.6 & -26.7 \\ 0.0 & -0.05 \\ 0.0 & -0.01 \\ 0.0 & -0.075 \\ 0.0 & -0.75 \end{vmatrix}$
$ \begin{array}{c} \tau\tau\\ \gamma\gamma\\ Z\gamma\\ ZZ\\ WW\\ A_1A_1 \end{array} $	$\begin{array}{c c} 8.3 - 9.1 \\ < 0.01 \\ - \\ < 0.01 \\ 11.4 - 64.2 \end{array}$	500 - 600 0.08 - 0.46 - 0.0 - 0.01 750 - 4.2e3	$ \begin{array}{r} 140 - 154 \\ 0.019 - 0.12 \\ - \\ < 0.01 \\ 194 - 1092 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$ $0.0 - 1.0$	$\begin{vmatrix} 0 & bbh \\ 25.6 & -26.7 \\ 0.0 & -0.05 \\ 0.0 & -0.01 \\ 0.0 & -0.075 \\ 0.0 & -0.75 \\ - \end{vmatrix}$
$ \begin{array}{c} \tau\tau\\ \gamma\gamma\\ Z\gamma\\ ZZ\\ WW\\ A_1A_1\\ \tilde{\chi}_0^1\tilde{\chi}_0^1 \end{array} $	$\begin{array}{c} 8.3 - 9.1 \\ < 0.01 \\ - \\ < 0.01 \\ 11.4 - 64.2 \\ 1.3 - 62.7 \end{array}$	500 - 600 $0.08 - 0.46$ $-$ $0.0 - 0.01$ $750 - 4.2e3$ $85 - 4.14e3$	$ \begin{array}{r} 140 - 154 \\ 0.019 - 0.12 \\ - \\ < 0.01 \\ 194 - 1092 \\ 22 - 1065 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$ $0.0 - 1.0$	$\begin{vmatrix} 0 & bbh \\ 25.6 & -26.7 \\ 0.0 & -0.05 \\ 0.0 & -0.01 \\ 0.0 & -0.075 \\ 0.0 & -0.75 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
$ \begin{array}{c} \tau\tau\\ \gamma\gamma\\ Z\gamma\\ ZZ\\ WW\\ A_1A_1\\ \tilde{\chi}_0^1\tilde{\chi}_0^1\\ bb \end{array} $	$\begin{array}{c} 8.3 - 9.1 \\ < 0.01 \\ - \\ - \\ < 0.01 \\ 11.4 - 64.2 \\ 1.3 - 62.7 \\ 76.1 - 90.9 \end{array}$	500 - 600 $0.08 - 0.46$ $-$ $0.0 - 0.01$ $750 - 4.2e3$ $85 - 4.14e3$ $5.0e3 - 6.0e3$	$ \begin{array}{r} 140 - 154 \\ 0.019 - 0.12 \\ - \\ < 0.01 \\ 194 - 1092 \\ 22 - 1065 \\ 1294 - 1545 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$ $0.0 - 1.0$ $-$ $300 - 500$	$\begin{vmatrix} & 0 & bbh \\ 25.6 & -26.7 \\ & 0.0 & -0.05 \\ & 0.0 & -0.01 \\ & 0.0 & -0.075 \\ & 0.0 & -0.75 \\ & - \\ $
$ \begin{array}{c} \tau\tau\\ \gamma\gamma\\ Z\gamma\\ ZZ\\ WW\\ A_1A_1\\ \tilde{\chi}_0^1\tilde{\chi}_0^1\\ bb\\ cc \end{array} $	$\begin{array}{c} 8.3 - 9.1 \\ < 0.01 \\ - \\ < 0.01 \\ 11.4 - 64.2 \\ 1.3 - 62.7 \\ 76.1 - 90.9 \\ 0.03 - 0.5 \end{array}$	500 = 600 $0.08 = 0.46$ $-$ $0.0 = 0.01$ $750 = 4.2e3$ $85 = 4.14e3$ $5.0e3 = 6.0e3$ $2.3 = 30$	$140 - 154 \\ 0.019 - 0.12 \\ - \\ < 0.01 \\ 194 - 1092 \\ 22 - 1065 \\ 1294 - 1545 \\ 0.9 - 3.1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{ c c c c c c } & 9.5 - 9.9 \\ 0.0 - 0.02 \\ < 0.01 \\ 0.0 - 0.03 \\ 0.0 - 0.3 \\ \hline \\ - \\ 64.5 - 90.1 \\ 0.03 - 0.5 \end{array}$	51 - 53 $0.01 - 0.09$ $0.0 - 0.02$ $0.0 - 0.15$ $0.0 - 1.0$ $-$ $300 - 500$ $0.2 - 2.8$	$\begin{vmatrix} & 0 & bbh \\ & 25.6 & -26.7 \\ & 0.0 & -0.05 \\ & 0.0 & -0.01 \\ & 0.0 & -0.075 \\ & 0.0 & -0.75 \\ & -1 \\ & $

Summary of Higgs boson branching ratios (SII)

For comparison of the discovery channels the XS x BR for the 125 GeV Higgs boson are for the ggf channel $\gamma\gamma$: 112 fb, ZZ: 1321 fb, Z γ : 76 fb, $\tau\tau$: 3090 fb and for the bbh channel $\gamma\gamma$: 1.3 fb, ZZ: 15.4 fb, Z γ : 0.8 fb, $\tau\tau$: 36 fb.

		$0-20 {\rm GeV}$			$20-40 \mathrm{GeV}$	
name	BR in %	$\left \begin{array}{c} \sigma_{ggf} \times BR \text{ in fb} \end{array} \right $	$\sigma_{bbh} \times BR$ in fb	BR in %	$\sigma_{ggf} \times BR$ in fb	$\left \begin{array}{c} \sigma_{bbh} \times BR \text{ in fb} \end{array} \right.$
$\tau \tau$	0.2 - 88.3	31.7 - 11.6e3	0.13 - 4.8	3.9 - 7.8	91 - 180	0.79 - 1.57
$\gamma\gamma$	0.0 - 0.02	0.03 - 3.27	0.0 - 0.01	0.0 - 0.2	0.0 - 3.5	0.0 - 0.035
$Z\gamma$	-	-	-	-	-	-
ZZ	-	-	-	-	-	-
WW	-	-	-	-	-	-
A_1A_1	51.3 - 98.3	6773 - 12977	28 - 54	90.1 - 99.6	2071 - 2290	18.0 - 19.9
$\tilde{\chi}_0^1 \tilde{\chi}_0^1$	-	-	-	-	-	-
bb	0.0 - 29.4	0 - 3880	0 - 16.1	46.3 - 92.0	1064 - 2118	9.3 - 18.4
cc	54.9 - 96.1	6069 - 12688	25 - 52	0.05 - 38.9	1.2 - 894	0.01 - 7.8
<i>gg</i>	4.5 - 10.2	588 - 1352	2.5 - 5.6	0.3 - 7.7	8.0 - 175	0.07 - 1.53
		40-90 GeV			90-120 GeV	
name	BR in %	$\left \sigma_{ggf} \times BR \right.$	$\sigma_{bbh} \times BR$	BR in %	$\sigma_{ggf} \times BR$	$\left \sigma_{bbh} \times BR \right.$
$\tau \tau$	5.0 - 9.2	30 - 54	0.8 - 1.5	6.5 - 8.4	30 - 39	0.8 - 1.0
$\gamma\gamma$	0.0 - 0.6	0.0 - 3.2	0.0 - 0.09	0.3 - 0.8	1.13 - 3.5	0.03 - 0.09
$Z\gamma$	-	-	-	0.0 - 0.1	0.0 - 0.5	0.0 - 0.012
ZZ	-	-	-	0.0 - 1.6	0.04 - 7.3	0.0 - 0.19
WW	0.0 - 0.07	0.01 - 0.4	0.0 - 0.01	0.01 - 8.8	0.06 - 40.3	0.0 - 1.1
A_1A_1	94.7 - 99.8	558 - 588	15.2 - 16.0	59.8 - 99.8	275 - 459	7.2 - 12.0
$\tilde{\chi}_0^1 \tilde{\chi}_0^1$	-	-	-	-	-	-
bb	54.7 - 91.6	322 - 540	8.8 - 14.7	65.9 - 89.6	303 - 412	7.9 - 10.8
cc	6.9 - 37.8	40.6 - 223	1.1 - 6.0	3.2 - 14.4	14.9 - 66.4	0.39 - 1.73
00						

Why we are interested in the NMSSM

NMSSM: m_h=125 GeV for TeV instead of multi-TeV stops

χ^2 Function $\chi^2_{tot} = \chi^2_{H_1} + \chi^2_{H_2} + \chi^2_{H_3} + \chi^2_{LEP} + \chi^2_{LHC}$

$$\chi_{H_1}^2 = \frac{(m_{H_1} - m_{grid,H_1})^2}{\sigma_{H_1}^2}$$

$$m_{grid,H_1}: \text{ Chosen point in the 3D mass space}$$

$$m_{H_1}: \text{ below observed Higgs boson, } \sigma_{H_1}^2 \text{ set to 2 GeV}$$

$$\chi_{H_2}^2 = \frac{(m_{H_2} - m_{obs})^2}{\sigma_{SM}^2} + \sum_i (c_{H_2}^i - c_{obs})^2 / \sigma_{coup}^2$$

$$125 \text{ GeV Higgs boson with SM couplings , } c_{H_2}^i: \text{ reduced couplings of } H_2, \text{ ratio of couplings of } H_2 \text{ to particle } i = f_u, f_d, W, Z, \gamma. \text{ Observed coupling } c_{coup} \text{ agree within 10\% with the SM couplings, so } \sigma_{coup}^2 = 0.1.$$

$$\chi_{H_3/A_1}^2 = \frac{\left(m_{H_3/A_1} - m_{grid,H_3/A_1}\right)^2}{\sigma_{H_3/A_1}^2}$$

- χ^2_{LEP} : includes the LEP constraints on the couplings of a light Higgs boson below 115 GeV and the limit on the chargino mass
- χ^2_{LHC} : includes the LHC constraints as implemented in NMSSMTools

Benchmark Points for different mass ranges

BMPs have been selected to have a maximal cross section times branching ratio for the corresponding decay mode

	0-20	${ m GeV}$		20-40	${\rm GeV}$	
	BMP 1	BMP 2	\parallel BMP 3	BMP 4	BMP 5	BMP 6
decay mode	$\mid \tau \tau \mid$	$\gamma\gamma$	$\parallel au au$	$ \gamma \gamma$	$ A_1 A_1$	$ ilde{\chi}_1^0 ilde{\chi}_1^0$
$\sigma_{aaf} \times BR$ in fb	2044.7	0.366	8069.6	0.999	9952.1	8890.7
$\sigma_{bbh} \times BR$ in fb	35.4	0.006	112.6	0.021	787.8	459.5
$BR(H_1 \to gg)$ in %	0.46	0.29	0.66	1.37	0.28	0.34
$BR(H_1 \to \tau \tau)$ in %	7.23	6.84	7.10	7.15	4.80	5.14
$BR(H_1 \to c\bar{c})$ in %	0.23	4.79	0.23	4.42	0.12	0.09
$BR(H_1 \to b\bar{b})$ in %	91.9	87.9	91.1	86.9	59.0	64.8
$BR(H_1 \to \gamma \gamma)$ in %	0.00	0.01	0.00	0.05	0.00	0.00
$BR(H_1 \to A_1 A_1)$ in %	-	-	-	-	34.1	5.19
$BR(H_1 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$ in %	-	-	0.78	-	1.59	24.2

See backup slides for corresponding mass spectrum

Benchmark Points for different mass ranges

BMPs have been selected to have a maximal cross section times branching ratio for the corresponding decay mode

	40-9	$0 \mathrm{GeV}$		90-	$-120 { m GeV}$	
	BMP 7 BMP 8	BMP 9 BMP 10	BMP 11	BMP 12	BMP 13	BMP 14
decay mode	$\mid \tau \tau \mid \gamma \gamma$	$\begin{vmatrix} A_1 A_1 & & \tilde{\chi}_1^0 \tilde{\chi}_1^0 \end{vmatrix}$	$ \tau \tau$	γγ	A_1A_1	$WW/ZZ/Z\gamma$
$ \begin{aligned} \sigma_{ggf} \times BR & \text{in fb} \\ \sigma_{bbh} \times BR & \text{in fb} \end{aligned} $	$\left \begin{array}{ccc}1018.2\\214.0\end{array}\right \begin{array}{c}66.1\\0.022\end{array}$	6931.9 2120.8 891.0 329.3	400.7 16.3	57.1 0.008	$\begin{array}{c c} 1255.5 \\ 7.3 \end{array}$	954.7/68.1/ 11.1 0.23/0.016/0.003
$\begin{array}{c} BR(H_1 \to gg) \text{ in } \% \\ BR(H_1 \to \tau\tau) \text{ in } \% \\ BR(H_1 \to c\bar{c}) \text{ in } \% \\ BR(H_1 \to b\bar{b}) \text{ in } \% \\ BR(H_1 \to \gamma\gamma) \text{ in } \% \\ BR(H_1 \to A_1A_1) \text{ in } \% \\ BR(H_1 \to WW) \text{ in } \% \\ BR(H_1 \to ZZ) \text{ in } \% \\ BR(H_1 \to Z\gamma) \text{ in } \% \\ BR(H_1 \to Z\gamma) \text{ in } \% \\ BR(H_1 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) \text{ in } \% \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccc} 0.04 & 0.24 \\ 0.79 & 5.87 \\ 0.06 & 0.13 \\ 8.30 & 68.1 \\ 0.00 & 0.00 \\ 90.7 & 8.67 \\ \hline & & \hline & & \hline & & \\ - & & & & \hline & \\ - & & & & \\ - & & & & \hline \\ - & & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & \\ - & & & \\ - & & \\ - & & & \\ - & & \\ $	2.14 9.06 1.40 86.1 0.07 - 1.06 0.04 0.01	$ \begin{array}{c} 49.0 \\ 0.69 \\ 33.6 \\ 11.6 \\ 2.06 \\ \hline 2.84 \\ 0.01 \\ 0.02 \\ \hline \end{array} $	$ \begin{array}{c} 1.92\\ 1.05\\ 1.13\\ 10.1\\ 0.08\\ 83.9\\ 1.62\\ 0.09\\ 0.02\\ -\\ -\\ \end{array} $	33.20.7317.710.81.48 $33.22.370.39$

See backup slides for corresponding mass spectrum

Upper bound for NMSSM double Higgs production BRs (if kinematically accessible)

	Region I large $λ$, $κ$, small tanβ	Region II small <i>λ</i> , <i>κ</i> , large $tan\beta$
$BR(H_1 \to A_1 A_1)$	80%	100%
$BR(H_2 \to A_1 A_1)$	8%	1%
$BR(H_2 \to H_1 H_1)$	7%	6%
$BR(A_2 \to A_1 H_1)$	25%	0%
$BR(A_2 \to A_1 H_2)$	30%	2%
$BR(H_3 \to A_1 A_1)$	2.5%	0%
$BR(H_3 \to H_1 H_1)$	35%	0%
$BR(H_3 \rightarrow H_1H_2)$	70%	5%
$BR(H_3 \rightarrow H_2H_2)$	2%	0.5%

See backup slides for corresponding BR plots Dominant A_1 decay modes in bb, $\tau\tau$ and MET see backup slides

Principle Fitting procedure

6 free parameter (6D) are needed to describe the Higgs sector in the NMSSM consisting of 6 Higgs bosons (6D)

Question: Can we invert the problem and fit the free couplings and NMSSM parameters for fixed Higgs masses to determine range for BRs?

* D. Das, U. Ellwanger, and A. M. Teixeira, arXiv:1106.5633

Reduction of the 6D Higgs mass space

- H_3 , H^{\pm} and A_2 are considerd to be degenerate in mass
- One observed 125 GeV Higgs with SM couplings

\rightarrow 3 undetermined free Higgs masses in the NSSM (3D)

- Provide 3D grid for unknown m_{H1} - m_{H3} - m_{A1} masses
- For each mass combination MINUIT* is used to determine corresponding NMSSM parameters

Efficient sampling of the parameter space and determination of the couplings

* F. James and M. Roos, Comput.Phys.Commun. 10 (1975) 343-367

Efficient sampling of Parameter Space - Example

- Dividing the axis of the 3D space into X~100 bin require a total of X^3 Minuit fits, which is quite feasible instead of random sampling in the 6D parameters of the Higgs parameters
- E.g. efficient sampling of parameter space allows to find points in parameter space which will elude the future searches for dark matter at the Darwin experiment

Scenario I (large λ, κ , small tan β)

Scenario II (small λ, κ , large $\tan \beta$)

Light Higgs production cross section

Light Higgs production cross section

No $tan\beta$ enhancement for bbH XS and large spread \rightarrow Coupling not only proportional to $tan\beta$ but also Higgs mixing matrix elements S_{11} and S_{12}

Special BRs for light (singlet-like) Higgs boson

- Small region in parameter space where $m_{A_1} < 0.5 m_{H1}$ leads to dominant BR into light pseudo-scalar Higgs
- Light pseudo-scalar Higgs boson mass and lightest neutralino mass are correlated
- $m_{A_1} < 0.5 \ m_{H1}$ implies $m_{\widetilde{\chi}^0_1} < 0.5 \ m_{H1}$

	Region I large $λ$, κ, small tanβ	Region II small λ, κ, large $tan\beta$
$BR(H_1 \to A_1 A_1)$	0-80%	0-100%
$BR(H_1 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0)$	0-70%	-

Light Neutralinos < 0.5 m_{H1} not possible in Region II \rightarrow Decays with MET only possible in Region I

BRs for light Higgs boson, if $m_{A_1} < 0.5 m_{H1}$ (implies $m_{\widetilde{\chi}^0_1} < 0.5 m_{H1}$)

Light pseudo-scalar Higgs boson mass and lightest neutralino mass are correlated

BRs for light Higgs boson, if $m_{A_1} < 0.5 m_{H1}$

Mass matrix M₀ has an additional singlino component in NMSSM

$$M_{0} = \begin{bmatrix} \mathbf{M}_{1} & 0 & -\frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{1}v_{u}}{\sqrt{2}} & 0 \\ 0 & \mathbf{M}_{2} & \frac{g_{2}v_{d}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & 0 \\ \frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{2}v_{d}}{\sqrt{2}} & 0 & -\mu_{eff} \\ \frac{g_{1}v_{u}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & -\mu_{eff} & 0 \\ 0 & 0 & -\lambda v_{u} & -\lambda v_{d} \\ \end{bmatrix} \begin{pmatrix} \mathbf{M}_{1} \approx 0.4m_{1/2}, M_{2} \approx 0.8m_{1/2}, M_{3} \approx 2.7m_{1/2} \\ \mathbf{MSSM} \\ \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1} \approx 0.4m_{1/2}, M_{2} \approx 0.8m_{1/2}, M_{3} \approx 2.7m_{1/2} \\ \mathbf{MSSM} \\ \mathbf$$

$$\Rightarrow \quad \widetilde{\chi}_1^0 = \widetilde{B} + \widetilde{W} + \widetilde{H}_1 + \widetilde{H}_2 + \widetilde{S}$$

LSP and A1 < 60 GeV possible but small region in parameter space

BRs x XS for light Higgs Boson

(in comparison with 125 GeV Higgs Boson)

 $Z\gamma$: in both Regions the mass range above 95 GeV is accessible

ZZ: for mass range above the maximal ratio is 1 ‰ because of phase space

 A_1A_1 : number of events N of the order of 1e7 for both production modes if kinematically allowed

Discovery potential for MET final states @14TeV

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0$: number of events N of the order of 1e7 for both production modes only possible for Region I

NMSSM double Higgs production BRs

Double Higgs production in H_2 decays

Dark Matter @ LHC 2018, Heidelberg

Double Higgs production in A₂ decays

 $\blacksquare BR(A_2 \to A_1H_1)$

Double Higgs production in H_3 decays

Double Higgs production in H_3 decays

