## Exoticsまとめ

#### 野辺 拓也 東京大学素粒子物理国際研究センター 25/12/2017@新テラスケール研究会





#### Introduction

- ・前回の研究会以降の最新結果 (ATLAS/CMS Run-2 13TeV L=36 fb<sup>-1</sup>)を 報告します
  - ・ VV/Vh/Vγ共鳴探索
  - ・ 関連して、A→Zh, H→ZZ, A/H→ττ探索の2HDM解釈
  - ・ 関連してbbA/H→invisible (+dark matter interpretation)
  - ・ 関連してmono-jet + MET, dijet (dark matter探索)
- LHCb & B-factoryで話題となったlepton flavor universalityの破れに
   関連し、Z'やleptoquark探索の最新情報については次の高橋さんの
   トークがカバーします

#### arXiv:1712.06386

 $ZZ \rightarrow 4$ -lepton

- 2つのZ→e+e-/µ+µ-候補を探して不変質量を組むシンプルな解析
- 崩壊分岐比は小さいが背景事象が極めて少なく、断面積の大きい低質量
   領域で感度が高い
- Local 3.6σ excess@m~240GeV & m~700GeV







- ・700GeVはllvvでは見えていない。
- ・240GeVはMET cut (>120GeV)のせいでIIvvは感度無し

#### <u>CMS-PAS-HIG-17-012</u>

### CMS 4-lepton (+ llvv + llqq)

- 4-leptonとllqqでは角度情報から計算したMatrix Element Likelihood
   を用いる
- ・~250GeVに~1σ(.....まあ。)のexcess、700GeVは何も無し



# 4-lepton mass: 各チャンネル



Electron channelに多い印象

#### Upper limit on $\sigma(pp \rightarrow X \rightarrow ZV)$ lower mass





8

# $\frac{\text{JHEP10 (2017) 112}}{Z\gamma resonance}$

- ・CMS: combination of IIγ and qqγ channels。250GeVはギリギリ感度 が無い (p<sub>T</sub>(e)>60GeV, p<sub>T</sub>(μ)>50GeVでトリガー)
- ATLASはeeγ+µµγのみ。lepton trigger p<sub>T</sub>>26GeVど取れているので、250GeVから見れている



### ちなみにdiphoton



10

### Boosted W/Z/h→qqの再構成

- ・ 質量が高い信号 (生成断面積:小) に迫る→ボソンのハドロン崩壊モードを用いる
   e.g. BR(ZZ→qqqqq)~50% v.s. BR(ZZ→4lepton)~4%
- ・ボソンの崩壊で生じるクォーク間の距離: ΔR(q,q)~2M/p<sub>T</sub>
  - pT=300GeVのWボソン: ΔR(q,q)~0.5
     → 通常のジェットアルゴリズム(anti-kT cone parameter R=0.4)では分離できない
  - ・1本のジェット(large-R jet, R=1.0)として再構成
  - ・ パイルアップからの寄与はうまく取り除く

ボソンの静止系





11



### Large-R jet: ATLAS v.s. CMS

- Anti-kT R=1.0 based on topo-clusters
- **Trimming**:  $p_T(j)/p_T(J) < 0.05 \mathcal{O}$  subjet  $l_{z}$ 落とす
- Combined track-assisted + calo mass  $m_{J,TA} = m_{J,trk} \times p_{T,calo}/p_{T,trk}$
- Energy correlation function  $(D_2)$



- **PUPPI** (pileup per particle identification) sub-jetのp<sub>T</sub>がバランスすることを要求
  - N-subjettiness ratio  $(T_{21})$







Events / 0.16 TeV

107

10<sup>6</sup>

10<sup>5</sup>

10'

10<sup>3</sup>

10<sup>2</sup>

10

1.0

0.8

0.5

0.25

0.50

0.75

1.00

Data/Postfit

Postfit/Pi 1.0 ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 

ggF cat. untagged SR

 $H \rightarrow ZZ \rightarrow \ell \ell q q$ 

Data

Z + jets

SM Diboson

**Top Quarks** 

///// Total Uncertainty

1.25

1.50

1.75 m<sub>ℓℓjj</sub> [TeV]

ggF H 1 TeV (20 fb)

- 240GeVはギリギリ感度が無い
- 700GeV: deficit? ~3σ • ATLAS/CMS同じ場所に同じくらい
- **Background prediction** •
  - ATLAS&CMS lower mass region: MC (ATLAS • Sherpa, CMS MadGraph)



#### Upper limit on $\sigma(pp \rightarrow X \rightarrow ZV)$ higher mass





#### arXiv:1710.07235 1710.01123 B2G-16-029 WW $\rightarrow ev\mu v, WW \rightarrow lvqq$



#### Upper limit on $\sigma(pp \rightarrow X \rightarrow WV)$ ggF/qq topologies



・ ATLASのほうがややmodel-dependentなcut (pT(V)/m(VV)>0.4) を入れているぶん少し良いが、だいたい同じくらいの感度

#### Upper limit on $\sigma(pp \rightarrow X \rightarrow WW)$ VBF





#### Vector boson scattering

- ・ Electroweak production of vector boson pair: ヒッグス機構の検証(ユニタリティの破れ)
- ・ EFTでanomalous quartic gauge coupling (aQGC)に制限
- ・ Effective c.m.s. energy (m<sub>vv</sub>) の関数で見たい
- VBF Diboson共鳴探索とほぼ同じ解析だが、b.g.をさらに抑えるためW<sup>\*</sup>W<sup>\*</sup> (same sign di-lepton)や4-lepton終状態を用いる
- ・ 前後方のジェット2本を要求する→high-m(jj) & large Δη(jj)に信号が見える



1709.05822 PLB 774 (2017) 682 PRD 95 (2017) 032001

### EW VBS cross section測定結果

• Same-sign di-lepton:

- ATLAS 8TeV 3.6σ (2.5σ expected)
- CMS 13TeV 5.5 $\sigma$  (5.7 $\sigma$  expected), 8TeV 2.0 $\sigma$  (3.5 $\sigma$  expected)
- ZZ $\rightarrow$ 4-lepton: CMS 13TeV 4-lepton 2.7 $\sigma$  (1.7 $\sigma$  expected)
- ・WV→lvqq: 8TeV only. Branching fractionの分high-massまでprobe可



### aQGCに対する制限



|                    | Observed limits       | Expected limits     | Previously observed limits |
|--------------------|-----------------------|---------------------|----------------------------|
|                    | ( TeV <sup>-4</sup> ) | $(\text{TeV}^{-4})$ | $(\text{TeV}^{-4})$        |
| $f_{S0}/\Lambda^4$ | [-7.7,7.7]            | [-7.0,7.2]          | [-38,40] ,[11]             |
| $f_{S1}/\Lambda^4$ | [-21.6, 21.8]         | [-19.9, 20.2]       | [-118, 120], [11]          |
| $f_{M0}/\Lambda^4$ | [-6.0, 5.9]           | [-5.6, 5.5]         | [-4.6, 4.6] , [36]         |
| $f_{M1}/\Lambda^4$ | [-8.7, 9.1]           | [-7.9, 8.5]         | [-17,17] ,[36]             |
| $f_{M6}/\Lambda^4$ | [-11.9, 11.8]         | [-11.1, 11.0]       | [-65,63] ,[11]             |
| $f_{M7}/\Lambda^4$ | [-13.3, 12.9]         | [-12.4, 11.8]       | [-70,66] ,[11]             |
| $f_{T0}/\Lambda^4$ | [-0.62, 0.65]         | [-0.58, 0.61]       | [-0.46, 0.44], [37]        |
| $f_{T1}/\Lambda^4$ | [-0.28, 0.31]         | [-0.26, 0.29]       | [-0.61, 0.61], [37]        |
| $f_{T2}/\Lambda^4$ | [-0.89, 1.02]         | [-0.80, 0.95]       | [-1.2, 1.2] , [37]         |

・ ATLAS 8TeV: O(p )項をSMに加え制限を設けた

$$\alpha_4 \mathcal{L}_4 = \alpha_4 \operatorname{tr}[\mathbf{V}_{\mu} \mathbf{V}_{\nu}] \operatorname{tr}[\mathbf{V}^{\mu} \mathbf{V}^{\nu}],$$
  
$$\alpha_5 \mathcal{L}_5 = \alpha_5 \operatorname{tr}[\mathbf{V}_{\mu} \mathbf{V}^{\mu}] \operatorname{tr}[\mathbf{V}_{\nu} \mathbf{V}^{\nu}],$$

- ・ High-massで感度があるためlvqqからの制限が強い
- ・CMS & ATLAS 13TeV: dimension-8 operatorのco-efficient (Eboli model [<u>link]</u>)に対して制限
  - ・ scalar型(S)、tensor型(T)、混合型(M)で18個の dimension-8演算子 e.g.

$$\mathcal{O}_{S,0} = \left[ (D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi \right] \times \left[ (D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi \right] ,$$
  
$$\mathcal{O}_{S,1} = \left[ (D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi \right] \times \left[ (D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi \right] ,$$
  
$$\mathcal{O}_{S,2} = \left[ (D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi \right] \times \left[ (D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi \right] ,$$

- ・ ssWWは8TeV→13TeVで5倍の感度増
- CouplingによってZZ→4leptonやγγ→WWが良い感度を持つ
   全チャンネルでの測定が大事

### **Boosted Higgs tagging**

- ・m(h)によるカットに加え、Large-R jetにb-jetが付随することを要求
- ・ATLASはsub-jetがb-tagされる本数(1本 or 2本)でカテゴリ分け
- ・ CMSはMVA-baseのdouble b-taggingを用いている。ATLASも開発を進めている





- ・ ヒッグスタグしたlarge-R jetを用いたqqbbモードでの探索で、m=3TeVに~3σのexcess
- ・ CMSでは見られない (代わりに2.5TeVにexcess)
- ・ Semi-leptonic channelでも確認を行った



#### <u>arXiv:1712.06518</u>

#### **Vh** semi-leptonic



24





High-mass: 2つのlarge-R jets w/double b-tagging

#### arXiv:1709.07242 CMS-PAS-HIG-17-020

- ・ тのleptonic (e/µ), hadronic decayを用いる
- bbA productionを考慮して、b-tag categoryを導入
- ・ 有意な信号は観測されなかった b-tag b-veto  $\tau_{h}\tau_{h}$  B-tag 35.9 fb<sup>-1</sup> (13 TeV) 60 F Events / GeV  $dN/dm_T^{tot}$  (1/GeV) **ATLAS** √s = 13 TeV, 36.1 fb<sup>-1</sup> Data **CMS** 10<sup>5</sup> —h,H,A→ττ Observation  $au_{\rm lep} au_{\rm had}$  b-veto  $\Box$  Jet $\rightarrow \tau$  fake Preliminary  $Z/\gamma^* \rightarrow \tau \tau$ 10<sup>4</sup> Ζ→ττ μ = 200 GeV  $Z/\gamma^* \rightarrow II$ 40 m<sub>A</sub> = 700 GeV jet $\rightarrow \tau_{h}$  fakes Top  $\tan\beta = 20$ 10<sup>3</sup> Diboson Electroweak --- A/H (300) linear scale ---- A/H (500) 10<sup>2</sup> 20 ---- A/H (800) Background uncertainty //// Uncertainty 10 log j scale 10<sup>-1</sup>  $10^{-3}$ 10<sup>-2</sup> 10<sup>-6</sup> Significance 2 1.5 0 -2 0.5 800 200 300 100 500 70 2000 20 30 200 100 1000 m<sub>T</sub><sup>tot</sup> [GeV]

m<sub>T</sub><sup>tot</sup> (GeV)

### 2HDMに対する制限 <u>PRL119(2017)191803</u>





#### arXiv:1710.11412 Invisible Higgs associated with b-quarks



- ・~1σの超過(まあ、よく合っている)
- Invisible HiggsはZH (2-lepton) channelでも
   標準模型と非常によく合っている
- ・ttH→invisibleはstop searchのreinterpretationで見ている。やはり~1oくらい のexcessはあるものの、SMに合っている







#### 711.03301 1712.02345 arXiv:1 jet + missing解析

- ではもっともシンプルなmono-jet解析はどうか?
- ・ ATLAS >1σ, CMS ~1σのexcess。今後も要注目

35.9 fb<sup>-1</sup> (13 TeV)







#### CMS-PAS-EXO-17-001

#### ISR + boosted $Z' \rightarrow qq$



- p<sub>T</sub>>500GeVを要求することでm>50GeVから見れる
- ・115GeVに~3σ excess
- ATLASはまだ見ていない







### Summary

|                                       | ATLAS               | CMS                                               | Comment                                                                                                                                                               |
|---------------------------------------|---------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>ZZ</b> → <b>4lepton</b><br>~250GeV | local ~3.5 σ        | local ~1 σ                                        | ggFとVBF-enriched SRの両方で見えている (ATLAS and CMS)。<br>4-electron channelに多め                                                                                                |
| ~700GeV                               | local ~3.5 $\sigma$ | No excess                                         | 他のチャンネル(llvv, llqq, vvqq)でも見えていない                                                                                                                                     |
| <b>ZZ</b> →llqq<br>~700GeV            | Deficit<br>~3σ      | Deficit<br>~3 σ                                   | 主なb.g. : Z+jets。ATLAS Sherpa v.s. CMS MadGraph                                                                                                                        |
| <b>Vh→qqbb</b><br>~3TeV               | local ~3σ           | No excess                                         | Wh→lvbbで<2♂。Zh→llbb/vvbbでは見えていない<br>CMSのVH semi-leptonicはもうすぐ出る(らしい)                                                                                                  |
| <b>A→Zh</b><br>~450GeV                | local ~3.5 σ        | まだ出てない                                            | 特にbbAで強く出ている。CMS HH→4b ~450GeVに~2 $\sigma$ 。<br>bb $\gamma \gamma$ , bb $\tau \tau$ では確認できない。ATLAS HHはもうすぐ出ます。<br>ttbarももうすぐ。A→ $\tau \tau$ でtan $\beta$ >~8は棄却されている。 |
| SM EW VBS                             | 8TeV only           | Same-sign di-<br>lepton 5 <i>o</i><br>measurement | ようやくSMに感度が出てきた。<br>今後はdifferentialを測定していき、ヒッグス機構を検証すると共に<br>aQGCなどhigh-mass scaleの新物理の検証                                                                              |
| mono-jet<br>DM search                 | ~l <i>σ</i>         | ~l <i>o</i>                                       | 1σですがATLAS/CMSで同じ方向にズレている<br>さらにデータを足して検証していく                                                                                                                         |
|                                       | No excess           | ~3 <i>o</i> @>4.5TeV<br>Angular analysis          | N/A                                                                                                                                                                   |
| Dijet                                 | まだ出てない              | ~3σ@115GeV<br>ISR+Boosted<br>Ζ'→qq                | DM mediator mass ~50GeVから~300GeVまでカバー                                                                                                                                 |

### Diboson full-hadronic



scalar,

### EFT VBS

・SMに以下の項を加える

 $\mathcal{O}_{S,0} = \left[ (D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi \right] \times \left[ (D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi \right] ,$  $\mathcal{O}_{S,1} = \left[ (D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi \right] \times \left[ (D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi \right] ,$  $\mathcal{O}_{S,2} = \left[ (D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi \right] \times \left[ (D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi \right] ,$ 

only field-strength tensors, called tensor,

- Dimension-6演算子はtriple gauge couplingからの制限が強い (LEP)
   のでdimension-8を考える
- ・右に列挙する18組の8次元演算子

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

$$\begin{aligned} \mathcal{O}_{T,0} &= \operatorname{Tr} \left[ \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[ \widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right] ,\\ \mathcal{O}_{T,1} &= \operatorname{Tr} \left[ \widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[ \widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right] ,\\ \mathcal{O}_{T,2} &= \operatorname{Tr} \left[ \widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[ \widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right] ,\\ \mathcal{O}_{T,5} &= \operatorname{Tr} \left[ \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} ,\\ \mathcal{O}_{T,6} &= \operatorname{Tr} \left[ \widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\mu\beta} \widehat{B}^{\alpha\nu} ,\\ \mathcal{O}_{T,7} &= \operatorname{Tr} \left[ \widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} ,\\ \mathcal{O}_{T,8} &= \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} ,\\ \mathcal{O}_{T,9} &= \widehat{B}_{\alpha\mu} \widehat{B}^{\mu\beta} \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} ,\end{aligned}$$

or two of them each, called mixed,

$$\mathcal{O}_{M,0} = \operatorname{Tr} \left[ \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] ,$$
  

$$\mathcal{O}_{M,1} = \operatorname{Tr} \left[ \widehat{W}_{\mu\nu} \widehat{W}^{\nu\beta} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] ,$$
  

$$\mathcal{O}_{M,2} = \left[ \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] ,$$
  

$$\mathcal{O}_{M,3} = \left[ \widehat{B}_{\mu\nu} \widehat{B}^{\nu\beta} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] ,$$
  

$$\mathcal{O}_{M,4} = \left[ (D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} D^{\mu} \Phi \right] \times \widehat{B}^{\beta\nu} ,$$
  

$$\mathcal{O}_{M,5} = \left[ (D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} D^{\nu} \Phi \right] \times \widehat{B}^{\beta\mu} ,$$
  

$$\mathcal{O}_{M,7} = \left[ (D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} \widehat{W}^{\beta\mu} D^{\nu} \Phi \right] .$$
  
36

#### Dijet angular analysis







37



#### 印象はcouplingによって大きく変わる

