
ROOT IO Update
Brian Bockelman

DIANA Meeting, 15 October 2017

Goals for Today
• Summary last week’s ROOT IO Workshop (includes contributions from inside and

outside DIANA).

• Compression progress.

• Bulk IO.

• Parallel file merging: TDataFrame and CMS progress.

• Outline of goals for the next year:

• Improved compression.

• Targets for 6.12.

• Note: skipping around a bit in the presentations, including some more forward-
looking content.

https://indico.fnal.gov/event/15154/

Compression
• We have been working to add support for LZ4 to ROOT IO — and backport to all

active release branches.

• Fixup test cases, build scripts, backport xxhash etc.

• Continuing our work to improve default zlib performance.

• Patches from CloudFlare are 4x faster for compression for zlib-9 but only
worked on x86-64 / new-ish processors. David A started - and Oksana
Shadura continued - work to making this usable on a wide variety of
platforms.

• Interesting finding: there are 2-3 versions of zlib in ROOT. The one used at
any given time varies based on how the user utilizes ROOT.

• Prior to merging “CloudFlare patches”, working to either get ROOT to one
version of zlib — or at least making sure the same one is used consistently.

Compression - LZ4
More importantly: reading is as fast as uncompressed

8 / 15

https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf

• LZ4 performs similarly to uncompressed data.
• LZ4 write speed similar to current ROOT default.
• LZ4 file size ~15% larger

Bulk IO Progress
• Reminder: Bulk IO is an approach that invokes ROOT libraries once per

“event cluster” (~hundreds of events) instead of per-event. Only applicable
for simple object types, but potentially huge speedups.

• Over the last summer, bulk IO…

• Matured enough to build two high-level interfaces (Python/numpy and
TTreeReader-like).

• Got enough functionality to do realistic performance comparisons.

• Got into a reviewable state and put in as a PR.

• Aiming to get this into 6.14 release.

• What follows are some slides from Jim and Oksana on performance tests

Bulk IO - >10x benefit
And BulkIO reading is super-fast: serious penalty for LZMA

9 / 15

100x penalty for LZMA

CMS Parallel Merging

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

ROOT I/O limits CMS scaling

CMS production jobs are multithreaded
• Production jobs currently use 4 cores with

4 framework event streams
• Output is handled by “one” modules that

can only be active on one thread at a time
• ROOT output is the dominant source of

output stalls
- We lose efficiency with more than 4 cores,

preventing us going to 8 cores
• Compression is the principal bottleneck

- Especially for AOD and MINIAOD data
compress with LZMA

2

https://indico.fnal.gov/event/15154/contribution/7/material/slides/0.pdf

CMS Parallel Merging

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

CMS Implementation

Refactored the CMS output module
• Kept single-threaded (“one”) output module for cases that are IO bound
• Factored out common bookkeeping code
• Chris Jones implemented a new “limited” module type

- Normal “stream” and “global” modules have parallelism limited only by the thread count;
“limited” modules have explicitly limited parallelism

- Goal is to only have as many TBufferMerger buffers as necessary, not one for every thread
• Parallel output module uses a tbb::concurrent_priority_queue to manage a pool of

output buffers
- Priority is set so that the available TBufferMerge with the most entries is used, to prefer filling

buffers quickly
- Minimizes tail and synchronization effects (vs. FIFO/round-robin)

4

TBufferMerger
TBufferMerger Class

3

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Output Thread

Disk

Data
Buffer

Data Queue
TBufferMerger

Write()

https://indico.fnal.gov/event/15154/contribution/9/material/slides/0.pdf
Work by G. Amadio, P. Canal, and D. Piper

CMS Parallel Merging

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

8

Stall Graph Comparison, LZMA 9

Note
scale

change

8

At 12 threads, scaling efficiency goes from 90.7% to 96.9%

Other: Using Object Stores
for petabyte-scale TFiles.
Idea #2 (this talk). Keep ROOT data as they are, but put

individual TBaskets in the object store. TFile/TTree subclasses
fetch data from the object store instead of seeking to file positions.

1. Presents the same TFile/TTree interface to users; old scripts still work.

2. But data replication, storage class, and caching are handled by the object store
with columnar granularity.

3. Branches are shared transparently across derived datasets: all trees are friends.

4. The logic of sharing, reference counting branches, managing datasets, etc. must
all be implemented in ROOT; only ROOT understands how to combine branches.

(the “ROOT becomes the database” approach)

8 / 12https://indico.fnal.gov/event/15154/contribution/10/material/slides/0.pdf

Generated lots of good discussion!
Focused on potential simplifications to show concepts.

Up-and-coming: 
Forward Compatibility Breaks
• ROOT 6.12 will introduce a new mechanism for detecting

forward-compatibility breaks.

• This way, if a file was written with feature XYZ, older
versions of ROOT will detect they can’t support it give
a clear error message. (Instead of crash or return
incorrect data…)

• Current plan is to introduce experimental features
(disabled by default) through the ROOT6 series. ROOT7
will enable a few of these by default.

Example: 
Skipping Entry Offsets

• For some object types, ROOT cannot predict the number of serialized bytes
(Think: dynamically-sized arrays). Hence, the branch contains an “entry
offset array” to save where each entry is in a basket.

• For many “split” objects, this is written once per attribute — and can be
calculated from a different branch (Think: dynamically-sized array of
int).

• Forward compatibility break: skip writing out these arrays when they aren’t
needed.

• Saves about 18% in file size for LZ4 
(CMS NanoAOD)

ZSTD\
• ZSTD is an interested new compression algorithm because it has a rich

API for generating and using compression dictionaries.

• Facebook developers report massive speedups and compression
ratio improvements when using dictionaries (almost a 3x improvement
in compression ratio!) on a corpus of 10,000 entries of 1KB each.

• If we can get anything near that, then it would be a huge improvement for
ROOT.

• Idea: after the first event cluster, analyze the buffer and write out a
separate compression dictionary.

• No clue how much of Facebook’s success can be repeated in ROOT,
but appears worth investigating this winter.

ZSTD - With Dictionaries
Source: http://facebook.github.io/zstd/

Definitely 6.14 material!!!

Up-and-Coming:
Release Plans

• 6.12:

• Forward compatibility break mechanism.

• Skip offset entry writing.

• Parallel, asynchronous unzipping.

• Performance / locking improvements inspired TBufferFile.

• Likely 6.14:

• Bulk IO initial version.

• Improved zlib

• ZSTD (or further out?)

