ROOT IO Update

Brian Bockelman
DIANA Meeting, 15 October 2017

Goals for Today

e Summary last week’s ROOT IO Workshop (includes contributions from inside and
outside DIANA).

e Compression progress.

e BulkIO.

e Parallel file merging: TDataFrame and CMS progress.
e Qutline of goals for the next year:

* Improved compression.

e Targets for 6.12.

* Note: skipping around a bit in the presentations, including some more forward-
looking content.

https://indico.fnal.gov/event/15154/

Compression

* \We have been working to add support for LZ4 to ROOT IO — and backport to all
active release branches.

* Fixup test cases, build scripts, backport xxhash etc.
e Continuing our work to improve default zlib performance.

e Patches from CloudFlare are 4x faster for compression for zlib-9 but only
worked on x86-64 / new-ish processors. David A started - and Oksana
Shadura continued - work to making this usable on a wide variety of
platforms.

e |nteresting finding: there are 2-3 versions of zlib in ROOT. The one used at
any given time varies based on how the user utilizes ROQOT.

* Prior to merging “CloudFlare patches”, working to either get ROOT to one
version of zlib — or at least making sure the same one is used consistently.

Compression - LZ4

https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf

&9 diana

More importantly: reading is as fast as uncompressed

CMS NanoAOD

Rate of reading from disk (kHz)

- LZ4 performs similarly to uncompressed data.
- LZ4 write speed similar to current ROOT default.

N NN
10.00

A g e
- J 8]

Compression level (0 and 1-9)

- LZ4 file size ~15% larger

20

[EY
(&)

(&)

Rate of reading from disk (kHz)
—
o

read speed vs size

I |
1z4 4-9 1z4 1-3
- o -
uncompressed
zhb A
Izma]
<

1 1 | 1

1 2 3 4 5

Event size (kB/event)

Bulk 10 Progress

e Reminder: Bulk 10 is an approach that invokes ROQOT libraries once per
“event cluster” (~hundreds of events) instead of per-event. Only applicable
for simple object types, but potentially huge speedups.

e QOver the last summer, bulk IO...

 Matured enough to build two high-level interfaces (Python/numpy and
TTreeReader-like).

e Got enough functionality to do realistic performance comparisons.
e Got into a reviewable state and put in as a PR.

* Aiming to get this into 6.14 release.

e What follows are some slides from Jim and Oksana on performance tests

Bulk 10 - >10x benefit

And BulklO reading is super-fast: serious penalty for LZMA C9diana

CMS NanoAOD

~N
T
2,
-
@
e IR
100.00
= 400.0C
O
g AGOO
g
- <500
S 200.00 %
= ©
@ £ 400
b &
2 g
o < 300
o ©
R o
U.00 0
0 2 3 4 5 6 7 2200
>
(48]
Compression level (0 and 1-9) 8 100
T

R

- 7|ib
- |[7Mma

1z4

BulklO speed vs size

-

T

Izma

100x penalty for LZMA =iy ——

T T T
®
uncompressed
1z4 4-9 124 1-3 N
%
zlib .
4 5

Event size (kB/event)

CMS Parallel Merging

ROQOT I/O limits CMS scaling

modules running stalled module running
multiple modules running

CMS production jobs are multithreaded 2 i s s st st st st

b bty it adiasnah melihiddl i) iAot dhiadihs miialiay
ddaini bl aatbiail beabn) Abssiaill kleaiion loatinkiang bt kil

[
o

* Production jobs currently use 4 cores with
4 framework event streams

 Output is handled by “one” modules that
can only be active on one thread at a time

Stream ID

» ROOT output is the dominant source of
output stalls

We lose efficiency with more than 4 cores,
preventing us going to 8 cores
- Compression is the principal bottleneck 12f

Especially for AOD and MINIAOD data
compress with LZMA

o Ll N w e wn (=] ~ (o2} o
Y Y Y Y T T Y

threads

0 100 200 300 400 500 600 700
Time (sec)

D. Riley (Cornell) — ROOT 1/O Workshop — 2017-10-11 =

https://indico.fnal.gov/event/15154/contribution/7/material/slides/0.pdf

CMS Parallel Merging

CMS Implementation

Refactored the CMS output module

Kept single-threaded (“one’) output module for cases that are IO bound
Factored out common bookkeeping code

Chris Jones implemented a new “limited” module type

Normal “stream™ and “"global™ modules have parallelism limited only by the thread count;
“limited” modules have explicitly limited parallelism

Goal is to only have as many TBufferMerger buffers as necessary, not one for every thread

Parallel output module uses a tbb::concurrent_priority queue to manage a pool of
output buffers

Priority is set so that the available TBufferMerge with the most entries is used, to prefer filling
buffers quickly
Minimizes tail and synchronization effects (vs. FIFO/round-robin)

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

CMS

TBufferMerger

TBufferMerger Class

TBufferMerger
. Data Data Data Data Data
Data Queue Buffer [| Buffer [| Buffer Buffer Buffer
! 1
Worker Thread | |
Worker Thread QLI Threacl!w , , , , , ,
S5D no c::;mprgs_sion m DRAMt:‘c’.comc.-ess o'_'\ G
Worker Thread TEE . 50 campressed Il : DRAN caompressed —@
Buffer - \
Worker Thread ' P
300 R
3 S |
Data Write () é 250 1',;--{]'!"'--.
Buffer 3 - A / :
; 20 S | :
,—é :j./' e :
a s \ hyperthreading
1P :
I
|
50 ___*'_ e
o m I
gy S : ! . i
1 2 3 4 S 6 7 a8

Number of Threads

Work by G. Amadio, P. Canal, and D. Piper
https://indico.fnal.gov/event/15154/contribution/9/material/slides/0.pdf

CMS Parallel Merging

3
Stall Graph Comparison, LZMA 9
d el p p dlrison,
modules running stalled module running modules running stalled module running
multiple modules running multiple modules running
T1E | it st s b] st b e s e] 11r
101 ekl b B i i] i b s il) 1 10t
O el s k) i sl il il bt s snad | O bbbl o bl s bt
Bl skt el LAl kit aha Ll it i s il B ettt st bbbt
. TT 0 siaball it il aai Mkl i bl okl s kst o R T it bbb bbbl b sk sbasiols
E O] miab b i b b i e i sl s | E O] kbbb o sl
S5 sl b kol ek i b st s Al i ¢ 55| et i kit sttt bl
A1 il ok Il i Uil bl b ot Mt s | T i okl et i
31 ket o) i] ok Mt s s i ¥ 31 il e b s bt Wl
20 b il kbt vmalnk btk s Ukl il ok ki 4 21 il ot s i
1F it ks e it i bk i il s il » 1 bbbl oinbits kbbbl
O | lotnibuiad ot ot i k) el] s s i O | bbb oo
140 200 400 600 800 1000 1200 1400 1600 140 200 400 600 800 1000 1200 1400
12+ ‘ 12+
9 10} g 10}
2 8t 3 8t
N t £ 3l £ 4
O e 3* (2) L #* % |
_2 1 1 1 Il 1 1 _2 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400
SC al e / Time (sec) Time (sec)
change
D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

At 12 threads, scaling efficiency goes from 90.7% to 96.9%

Other: Using Object Stores

for petabyte-scale TFiles.

ldea #2 (this talk). Keep ROOT data as they are, but put
individual TBaskets in the object store. TFile/TTree subclasses
fetch data from the object store instead of seeking to file positions.

1. Presents the same TFile/TTree interface to users; old scripts still work.

2. But data replication, storage class, and caching are handled by the object store
with columnar granularity.
3. Branches are shared transparently across derived datasets: all trees are friends.

4. The logic of sharing, reference counting branches, managing datasets, etc. must
all be implemented in ROOT; only ROOT understands how to combine branches.

(the “ROOT becomes the database” approach)
https://indico.fnal.gov/event/15154/contribution/10/material/slides/0.pdf

Generated lots of good discussion!
Focused on potential simplifications to show concepts.

Up-and-coming:
Forward Compatibility Breaks

e ROOT 6.12 will introduce a new mechanism for detecting
forward-compatibility breaks.

e This way, if a file was written with feature XY/Z, older
versions of ROOT will detect they can’t support it give

a clear error message. (Instead of crash or return
incorrect data...)

e Current plan is to introduce experimental features

(disabled by default) through the ROOT6 series. ROOTY7
will enable a few of these by default.

Example:
Skipping Entry Offsets

For some object types, ROOT cannot predict the number of serialized bytes
(Think: dynamically-sized arrays). Hence, the branch contains an “entry
offset array” to save where each entry is in a basket.

e For many “split” objects, this is written once per attribute — and can be
calculated from a different branch (Think: dynamically-sized array of
int).

Forward compatibility break: skip writing out these arrays when they aren’t
needed.

Saves about 18% in file size for LZ4
(CMS NanoAOD)

Compression level (0 and 1-9)

ZSTD\

e ZSTD is an interested new compression algorithm because it has a rich
API for generating and using compression dictionaries.

e Facebook developers report massive speedups and compression
ratio improvements when using dictionaries (almost a 3x improvement
iIn compression ratio!) on a corpus of 10,000 entries of 1KB each.

* |If we can get anything near that, then it would be a huge improvement for
ROOT.

* |dea: after the first event cluster, analyze the buffer and write out a
separate compression dictionary.

e No clue how much of Facebook’s success can be repeated in ROOT,
but appears worth investigating this winter.

ZSTD - With Dictionaries

Source: http://facebook.github.io/zstd/

Definitely 6.14 material!!!

COMPRESSION RATIO COMPRESSION SPEED (MB/S) DECOMPRESSION SPEED (MB/S)

® normal ™ with dictionary ®normal ™ with dictionary ® normal ™ with dictionary

Up-and-Coming:
Release Plans

* 6.12:

e Forward compatibility break mechanism.

Skip offset entry writing.

e Parallel, asynchronous unzipping.

e Performance / locking improvements inspired TBufferFile.
* Likely 6.14:

e Bulk IO initial version.

e Improved zlib

e ZSTD (or further out?)

