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Goals of modularization project

The project goals are:

e Recheck ROOT subsystems and dependencies: CORE, I/O, Math and etc.

e Select “small heart-like” part of ROOT that could be a fundamental for
modularization process;

e Make ROOT friendly for plugin new developments/products:
o  Adapt the ROOT source code to enable (more) custom-tailor products.
o  Support custom-tailor products in the build system by
i.  checking out what is needed only,
ii. building what is needed only,
iii. re-usingintermediate or final deliverables.

e Enable pre-build intermediates and their usage.
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Benefits

e Userscanget as afinal product - ROOT as a smaller package containing just the services they need
and plugging extra whenever they want;

Making ROOT more friendly for users;

Possibility to plug and unplug components;

Help in efficient managing dependencies (ROOT libraries and external libraries);

Simplify the adapting process for a new/external contributions in ROOT;



Start At The Beginning

e Talkto 4 developers what “modularization” means and you'll get 5 answers.

e Tryingtostart at the base layer - “how would ROOT define a module?” - and trying to a few
examples of simple ROOT functionality to see how we could recast them as a module.

e Wouldlike to get a good feeling for how a module or package would work before a thorough
treatment of how they are managed.

e Presentingin forums like this one provide a mechanism for feedback from a wide set of viewpoints.



Examples of products
modularization



Examples of modularization: LibreOffice & Xorg

https://wiki.openoffice.org/wiki/Modularization org

https://www.x.org/wiki/ModularizationProposal/



https://wiki.openoffice.org/wiki/Modularization_org
https://www.x.org/wiki/ModularizationProposal/

Background studies on
modularization



Two directions of ROOT modularization project

e First: add external support to plug new contributions that doesn't require changes in a ROOT core;
e Second: change or add new interfaces to be able easily plug new developments;
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We need to add package manager or
alternative classes and work on both
directions together!
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Package managers as an inspiration for a new
tool

e Homebrew
e Portage (It has GIT plug-in module for portage which performs various git actions and checks on repositories.)
e Spack
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Spack

e Spackis a package management tool designed to support multiple versions and configurations of
software on a wide variety of platforms and environments.
e Itiswidelyusedin EP-SFT for LCGPackages, could be the ideas used in Spack, is useful for project?

$ spack install
mpileaks&? 3l
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Python packaging PEP425 and PEP427

e Wheel format https://wheel.readthedocs.io/en/latest/

Wheel Slogans @

Because ‘newegg’ was taken.
Python packaging - reinvented.
A container for cheese.

It makes it easier to roll out software.

To quote PEP 427, wheel is:

A wheel is a ZIP-format archive with a specially formatted file name and the
.whl extension. It contains a single distribution nearly as it would be installed
according to PEP 376 with a particular installation scheme. Although a
specialized installer is recommended, a wheel file may be installed by simply
unpacking into site-packages with the standard 'unzip’ tool while preserving
enough information to spread its contents out onto their final paths at any
later time.

To put it simply, wheels are a way to have your own local instant pypi.
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https://wheel.readthedocs.io/en/latest/

PEP 425 and wheel

{distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

Usage:
pip wheel
pip wheel
pip wheel
pip wheel
pip wheel

Description:

[options]
[options]
[options]
[options]
[options]

Pep 425 tags are
similar to
LCGpackages names

<requirement specifier> ...

-r <requirements file> ... (::)
[-e] =vcs project urls ...

[-e] <local project path= .

<archive url/path=> ..

Requirement

Build Wheel archives for your requirements and dependencies. files?

Wheel is a built-package format, and offers the advantage of not
recompiling your software during every install. For more details, see the
wheel docs: https://wheel.readthedocs.io/en/latest/

Requirements: setuptools==0.8, and wheel.

'pip wheel' uses the bdist wheel setuptools extension from the wheel
package to build individual wheels.
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Put wheels under your feet!

PEP 427
setuptools >= 0.8

pip can populate
wheel cache

Labels eg
linux_x86_64

py3
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Index

Idea of
cache!
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e Packages are the fundamental units of
reproducible R code. They include reusable
R functions, the documentation that
describes how to use them, and sample
data.

e Rdoes not have responsibility for plugged
packages

You can further provide examples (which can also serve as tests) and
links to related functions. The examples need to be fast (< 5 sec),
because they’re run frequently. (CRAN checks every package every

day on multiple systems.)

RSkittleBrewer/

DESCRIPTION
NAMESPACE

R/RSkittleBrewer.R
R/plotSkittles.R
R/plotSmarties.R

man/RSkittleBrewer.Rd
man/plotSkittles.Rd
man/plotSmarties.Rd

An .Rd file

\name{RSkittleBrewer}
\alias{RSkittleBrewer}
\title{Candy-based color palettes}
\description{Vectors of colors corresponding to different
candies .}
\usage{RSkittleBrewer(flavor = c("original", "tropical",
"wildberry", "M&M", "smarties"))
'k
\arguments{
\item{flavor}{Character string for candy-based color
palette.}
}
\value{Vector of character strings representing the chosen
set of colors.}
\examples{
plotSkittles()
plotSmarties ()
ik
\keyword{hplot}
\seealso{ \code{\link{plotSkittlesl}},
\code{\link{plotSmarties}} }




Ideas about how to help to
modularize ROOT



Proposal about Cling integrated tool from
Vassil V.

[root]#include “TXXX.h”
“No such package XXX. Installing it for you..”
[root]TXXX a;

[root] //works
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Ideas for a tool Tinstaller from Pere Mato

e Tinstalleris aclass that help ROOT to work with external packages (from cvmfs/lcgexternals) or
help build packages from scratch

e Similar to Python package management tool?

e Where to put Tlnstaller: could be or external or inside Core or inside Cling?
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Next steps

Review ROOT minimal option ("Minimal Installation")

Review dependencies introduced in Core and etc.

Test functionality of ROOT minimal

Make a prototype allowing to upgrade ROOT minimal with extra options/dependencies/services
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Thank you!
Looking forward to see your ideas
and suggestions!



