ROOT Modularization

Oksana Shadura, University of Lincoln-Nebraska

Goals of modularization project

The project goals are:

e Recheck ROOT subsystems and dependencies: CORE, I/O, Math and etc.

e Select “small heart-like” part of ROOT that could be a fundamental for
modularization process;

e Make ROOT friendly for plugin new developments/products:
o Adapt the ROOT source code to enable (more) custom-tailor products.
o Support custom-tailor products in the build system by
i. checking out what is needed only,
ii. building what is needed only,
iii. re-usingintermediate or final deliverables.

e Enable pre-build intermediates and their usage.

©l

from ROOT to BOOT
from BOOT to ROOT

A

Rene.Brun@cern.ch

26 March 2007

Benefits

e Userscanget as afinal product - ROOT as a smaller package containing just the services they need
and plugging extra whenever they want;

Making ROOT more friendly for users;

Possibility to plug and unplug components;

Help in efficient managing dependencies (ROOT libraries and external libraries);

Simplify the adapting process for a new/external contributions in ROOT;

Start At The Beginning

e Talkto 4 developers what “modularization” means and you'll get 5 answers.

e Tryingtostart at the base layer - “how would ROOT define a module?” - and trying to a few
examples of simple ROOT functionality to see how we could recast them as a module.

e Wouldlike to get a good feeling for how a module or package would work before a thorough
treatment of how they are managed.

e Presentingin forums like this one provide a mechanism for feedback from a wide set of viewpoints.

Examples of products
modularization

Examples of modularization: LibreOffice & Xorg

https://wiki.openoffice.org/wiki/Modularization org

https://www.x.org/wiki/ModularizationProposal/

https://wiki.openoffice.org/wiki/Modularization_org
https://www.x.org/wiki/ModularizationProposal/

Background studies on
modularization

Two directions of ROOT modularization project

e First: add external support to plug new contributions that doesn't require changes in a ROOT core;
e Second: change or add new interfaces to be able easily plug new developments;

4)

We need to add package manager or
alternative classes and work on both
directions together!

- /

Package managers as an inspiration for a new
tool

e Homebrew
e Portage (It has GIT plug-in module for portage which performs various git actions and checks on repositories.)
e Spack

GRLS PORTAGE TOO

Git

Recipes?

Integration
?

Qi == - SRR, e e it e el - 9

Spack

e Spackis a package management tool designed to support multiple versions and configurations of
software on a wide variety of platforms and environments.
e Itiswidelyusedin EP-SFT for LCGPackages, could be the ideas used in Spack, is useful for project?

$ spack install
mpileaks&? 3l

Command Line

Package
Files

Abstract Specs

Intersect
Constraints

Site
Config

—PR—I’
¥4

Concretize
Parameters

A
Resolve >
Virtual Deps > ?/Q

Userh"

=+

Config

R
— $A—

9
O

Concrete Spec

install()

10

Python packaging PEP425 and PEP427

e Wheel format https://wheel.readthedocs.io/en/latest/

Wheel Slogans @

Because ‘newegg’ was taken.
Python packaging - reinvented.
A container for cheese.

It makes it easier to roll out software.

To quote PEP 427, wheel is:

A wheel is a ZIP-format archive with a specially formatted file name and the
.whl extension. It contains a single distribution nearly as it would be installed
according to PEP 376 with a particular installation scheme. Although a
specialized installer is recommended, a wheel file may be installed by simply
unpacking into site-packages with the standard 'unzip’ tool while preserving
enough information to spread its contents out onto their final paths at any
later time.

To put it simply, wheels are a way to have your own local instant pypi.

11

https://wheel.readthedocs.io/en/latest/

PEP 425 and wheel

{distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

Usage:
pip wheel
pip wheel
pip wheel
pip wheel
pip wheel

Description:

[options]
[options]
[options]
[options]
[options]

Pep 425 tags are
similar to
LCGpackages names

<requirement specifier> ...

-r <requirements file> ... (::)
[-e] =vcs project urls ...

[-e] <local project path= .

<archive url/path=> ..

Requirement

Build Wheel archives for your requirements and dependencies. files?

Wheel is a built-package format, and offers the advantage of not
recompiling your software during every install. For more details, see the
wheel docs: https://wheel.readthedocs.io/en/latest/

Requirements: setuptools==0.8, and wheel.

'pip wheel' uses the bdist wheel setuptools extension from the wheel
package to build individual wheels.

12

Put wheels under your feet!

PEP 427
setuptools >= 0.8

pip can populate
wheel cache

Labels eg
linux_x86_64

py3

Package retrieved A

from cache

populate
wheel cach

install

python
&

wheel cache

Index

Idea of
cache!

13

ail.com

i1thub. com/fcho

Simple
configuration el
and metadata : : . : . Q2fLM i Elr;ﬁ:qm

1
bdist_whe
Lib: true

[{"email™: “franc
cription’ : {"Home": "http
L (8.29

ython'

e Packages are the fundamental units of
reproducible R code. They include reusable
R functions, the documentation that
describes how to use them, and sample
data.

e Rdoes not have responsibility for plugged
packages

You can further provide examples (which can also serve as tests) and
links to related functions. The examples need to be fast (< 5 sec),
because they’re run frequently. (CRAN checks every package every

day on multiple systems.)

RSkittleBrewer/

DESCRIPTION
NAMESPACE

R/RSkittleBrewer.R
R/plotSkittles.R
R/plotSmarties.R

man/RSkittleBrewer.Rd
man/plotSkittles.Rd
man/plotSmarties.Rd

An .Rd file

\name{RSkittleBrewer}
\alias{RSkittleBrewer}
\title{Candy-based color palettes}
\description{Vectors of colors corresponding to different
candies .}
\usage{RSkittleBrewer(flavor = c("original", "tropical",
"wildberry", "M&M", "smarties"))
'k
\arguments{
\item{flavor}{Character string for candy-based color
palette.}
}
\value{Vector of character strings representing the chosen
set of colors.}
\examples{
plotSkittles()
plotSmarties ()
ik
\keyword{hplot}
\seealso{ \code{\link{plotSkittlesl}},
\code{\link{plotSmarties}} }

Ideas about how to help to
modularize ROOT

Proposal about Cling integrated tool from
Vassil V.

[root]#include “TXXX.h”
“No such package XXX. Installing it for you..”
[root]TXXX a;

[root] //works

17

Ideas for a tool Tinstaller from Pere Mato

e Tinstalleris aclass that help ROOT to work with external packages (from cvmfs/lcgexternals) or
help build packages from scratch

e Similar to Python package management tool?

e Where to put Tlnstaller: could be or external or inside Core or inside Cling?

18

Next steps

Review ROOT minimal option ("Minimal Installation")

Review dependencies introduced in Core and etc.

Test functionality of ROOT minimal

Make a prototype allowing to upgrade ROOT minimal with extra options/dependencies/services

19

Thank you!
Looking forward to see your ideas
and suggestions!

