
Describing the ROOT format with a DSL

Jim Pivarski

Princeton University – DIANA

October 16, 2017

1 / 11

ROOT is a file format.

I It’s like HDF5 in that it organizes data objects in a filesystem-like structure.

I It’s like Avro in that it defines the structure of the classes it stores.

I It’s like Parquet in that it can split classes into columns for efficient access.

I Although it’s more like Arrow/Feather in the way that it implements splitting.

I It’s like Pickle in that its data model encompasses an entire language (C++
rather than Python).

I It’s like FITS in that it was developed by a scientific community for that
community.

I It’s unlike most of the above in that it doesn’t have a formal specification.

2 / 11

Specifications and implementations: what I could find

inception specification implementations

FITS 1981 https://fits.gsfc.nasa.gov/standard30/fits standard30aa.pdf 38

netCDF,HDF4/5 1992 https://support.hdfgroup.org/HDF5/doc/H5.format.html 35

ROOT 1995 some class headers like TFile and TKey; not enough info to read a file 6

Pickle 1996 implementation changes: 1→2 PEP-307, 3→4 PEP-3154; not a real spec 4

Protocol buffers 2001 https://developers.google.com/protocol-buffers/docs/encoding 20

Thrift 2007 UNOFFICIAL: https://erikvanoosten.github.io/thrift-missing-specification/ 15

Avro 2009 http://avro.apache.org/docs/current/spec.html 13

Parquet 2013 http://parquet.apache.org/documentation/latest/ 5

Arrow/Feather 2016 https://arrow.apache.org/docs/memory layout.html 7

3 / 11

https://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://root.cern.ch/doc/master/classTFile.html
https://root.cern.ch/doc/master/classTKey.html
http://legacy.python.org/dev/peps/pep-0307/
https://www.python.org/dev/peps/pep-3154/
https://developers.google.com/protocol-buffers/docs/encoding
https://erikvanoosten.github.io/thrift-missing-specification/
http://avro.apache.org/docs/current/spec.html
http://parquet.apache.org/documentation/latest/
https://arrow.apache.org/docs/memory_layout.html

Why not specify?

I inhibits development

I human-readable documents get out of
date

I personnel already limited

I streamer info already specifies most
classes dynamically

I ROOT C++ implementation must be
primary

Why specify?

I better data preservation

I clarifies invariants that are hard to
express or not local in code

I formal process for adding I/O features

I allows alternate I/O projects to
maintain themselves

I may be descriptive, rather than
prescriptive

4 / 11

What alternate implementations?

project language purpose maintainer

ROOT C++ main project the ROOT Team (Philippe Canal)

JsRoot Javascript interacting with ROOT in
the browser or standalone

the ROOT Team (Sergey Linev)

RIO C++ embedded in GEANT-4 Guy Barrand?

root4j Java Spark and other Big Data Viktor Khristenko

rootio Go go-hep ecosystem in Go Sebastien Binet

uproot Python BulkIO-style Numpy access,
pip-installable root numpy,
understanding ROOT I/O,
prototyping

Jim Pivarski (me)

5 / 11

Sample code from uproot

fNbytes, fVersion, fObjlen, fDatime, fKeylen, fCycle = \
file.readfields("!ihiIhh")

if fVersion > 1000:
fSeekKey, fSeekPdir = file.readfields("!qq") # 64-bit

else:
fSeekKey, fSeekPdir = file.readfields("!ii") # 32-bit

fClassName = file.readstring() # byte or int32 size prefix
fName = file.readstring()
fTitle = file.readstring()

This is imperative Python code, but it doesn’t need to be.

6 / 11

Sample code from uproot

fNbytes, fVersion, fObjlen, fDatime, fKeylen, fCycle = \
file.readfields("!ihiIhh")

if fVersion > 1000:
fSeekKey, fSeekPdir = file.readfields("!qq") # 64-bit

else:
fSeekKey, fSeekPdir = file.readfields("!ii") # 32-bit

fClassName = file.readstring() # byte or int32 size prefix
fName = file.readstring()
fTitle = file.readstring()

This is imperative Python code, but it doesn’t need to be.

6 / 11

As a declarative specification

TKey:
assert:
- $size == fKeylen # check!

members:
- fNbytes: int32
- fVersion: int16
- fObjlen: int32
- fDatime: int32
- fKeylen: int16
- fCycle: int16
- if:

- case: version > 1000
then:

- fSeekKey: int64 # big
- fSeekPdir: int64

- else:
- fSeekKey: int32 # small
- fSeekPdir: int32

- fClassName: string
- fName: string
- fTitle: string

YAML is a declarative data language like
JSON, but optimized for human input,
often used for configuration files.

With additional interpretation, we can use
it as a DSL for describing ROOT layout.

I An executable specification!

I Says nothing about eagerness vs.
laziness of reading, leaving that to the
implementation.

I Resembles streamer info, apart from
if-then branches.

I Can add features as needed, but
syntax is fixed.

7 / 11

As a declarative specification

TDirectory:
members:
- version: int16
- ctime: int32
- mtime: int32
- nbyteskeys: int32
- nbytesname: int32
- if:

- case: version <= 1000
then:

- seekdir: int32
- seekparent: int32
- seekkeys: int32

- else:
- seekdir: int64
- seekparent: int64
- seekkeys: int64

- keys:
type: TKeys
at: seekkeys # seek to this value

YAML is a declarative data language like
JSON, but optimized for human input,
often used for configuration files.

With additional interpretation, we can use
it as a DSL for describing ROOT layout.

I An executable specification!

I Says nothing about eagerness vs.
laziness of reading, leaving that to the
implementation.

I Resembles streamer info, apart from
if-then branches.

I Can add features as needed, but
syntax is fixed.

7 / 11

As a declarative specification

TKeys:
doc: |
There is no ROOT class named
"TKeys," but it’s useful to define
one here to represent a header
TKey followed by an arbitrary
number of TKeys.

members:
- header: TKey
- nkeys:

type: int32
at: $pos + header.keylen

- keys: {array: TKey, size: nkeys}

TBuffer ReadVersion:
doc: What TBuffer::ReadVersion does.
members:
- bytecount:

needs to be transformed first
type: uint32
postprocess: |

bytecount & ˜uint32(0x40000000)
- version: uint16

YAML is a declarative data language like
JSON, but optimized for human input,
often used for configuration files.

With additional interpretation, we can use
it as a DSL for describing ROOT layout.

I An executable specification!

I Says nothing about eagerness vs.
laziness of reading, leaving that to the
implementation.

I Resembles streamer info, apart from
if-then branches.

I Can add features as needed, but
syntax is fixed.

7 / 11

Eagerness vs. laziness

Selective reading is one of the most important features of ROOT I/O.

I In C++, ROOT reads TKey and TBasket data in response to user requests.

I In Python, I additionally want to avoid creating strings and other non-primitives
before they’re accessed (as Python “properties”).

These decisions are very implementation-dependent, and shouldn’t be a part of a
specification.

I Although the YAML file describes the order of fields in the bytestream, they don’t
have to be read in that order.

I As a demonstration, I implemented a purely lazy ROOT TH1F reader (nothing is
read until explicitly referenced), configured by a YAML file:

https://github.com/jpivarski/rootspec

8 / 11

https://github.com/jpivarski/rootspec

Eagerness vs. laziness

Selective reading is one of the most important features of ROOT I/O.

I In C++, ROOT reads TKey and TBasket data in response to user requests.

I In Python, I additionally want to avoid creating strings and other non-primitives
before they’re accessed (as Python “properties”).

These decisions are very implementation-dependent, and shouldn’t be a part of a
specification.

I Although the YAML file describes the order of fields in the bytestream, they don’t
have to be read in that order.

I As a demonstration, I implemented a purely lazy ROOT TH1F reader (nothing is
read until explicitly referenced), configured by a YAML file:

https://github.com/jpivarski/rootspec

8 / 11

https://github.com/jpivarski/rootspec

Eagerness vs. laziness

Selective reading is one of the most important features of ROOT I/O.

I In C++, ROOT reads TKey and TBasket data in response to user requests.

I In Python, I additionally want to avoid creating strings and other non-primitives
before they’re accessed (as Python “properties”).

These decisions are very implementation-dependent, and shouldn’t be a part of a
specification.

I Although the YAML file describes the order of fields in the bytestream, they don’t
have to be read in that order.

I As a demonstration, I implemented a purely lazy ROOT TH1F reader (nothing is
read until explicitly referenced), configured by a YAML file:

https://github.com/jpivarski/rootspec

8 / 11

https://github.com/jpivarski/rootspec

Streamer info

Most ROOT classes are already specified to this degree, not in a document, but in the
ROOT files themselves, as TStreamerInfo.

Includes some very basic classes, like TTree, TList, TNamed, TObjArray. . .

No reason to duplicate this (and the version dependencies would be complicated to
express in branches, anyway).

9 / 11

How far can this kind of documentation go?

Brian’s wish list:

I Container classes to “bootstrap” to the point where we can read streamers: TFile,
TKey, TBasket, TDirectory, the streamer classes themselves. . .

I How STL classes are streamed (may rewrite STL documentation in our format).

I ROOT’s custom framing for compressed blocks (9 bytes before ZLIB, LZMA, and
17 before LZ4).

I How streamers are generated from classes.

I How classes are split into branches.

I How cross-references are keyed by byte positions (relative to what origin).

The last three could be hard to express declaratively. . .

10 / 11

Conclusions

A non-prescriptive specification of how ROOT I/O works would benefit data
preservation, the process of changing ROOT I/O, and alternate implementations.

Such a document can be an unofficial description (as Erik van Oosten did for Thrift).

It can also be executable, to verify that it’s correct on test samples and to ensure that
it doesn’t get out-of-date.

I began a demonstration-level project documenting some core ROOT classes with
YAML, which can configure readers anywhere on the eager-to-lazy spectrum (by
implementing purely lazy; eager is much more straightforward).

https://github.com/jpivarski/rootspec

11 / 11

https://github.com/jpivarski/rootspec

Conclusions

A non-prescriptive specification of how ROOT I/O works would benefit data
preservation, the process of changing ROOT I/O, and alternate implementations.

Such a document can be an unofficial description (as Erik van Oosten did for Thrift).

It can also be executable, to verify that it’s correct on test samples and to ensure that
it doesn’t get out-of-date.

I began a demonstration-level project documenting some core ROOT classes with
YAML, which can configure readers anywhere on the eager-to-lazy spectrum (by
implementing purely lazy; eager is much more straightforward).

https://github.com/jpivarski/rootspec

11 / 11

https://github.com/jpivarski/rootspec

Conclusions

A non-prescriptive specification of how ROOT I/O works would benefit data
preservation, the process of changing ROOT I/O, and alternate implementations.

Such a document can be an unofficial description (as Erik van Oosten did for Thrift).

It can also be executable, to verify that it’s correct on test samples and to ensure that
it doesn’t get out-of-date.

I began a demonstration-level project documenting some core ROOT classes with
YAML, which can configure readers anywhere on the eager-to-lazy spectrum (by
implementing purely lazy; eager is much more straightforward).

https://github.com/jpivarski/rootspec

11 / 11

https://github.com/jpivarski/rootspec

Conclusions

A non-prescriptive specification of how ROOT I/O works would benefit data
preservation, the process of changing ROOT I/O, and alternate implementations.

Such a document can be an unofficial description (as Erik van Oosten did for Thrift).

It can also be executable, to verify that it’s correct on test samples and to ensure that
it doesn’t get out-of-date.

I began a demonstration-level project documenting some core ROOT classes with
YAML, which can configure readers anywhere on the eager-to-lazy spectrum (by
implementing purely lazy; eager is much more straightforward).

https://github.com/jpivarski/rootspec

11 / 11

https://github.com/jpivarski/rootspec

