
PATATRACK
Accelerated Pixel Tracks at the HLT starting from Run 3

D. Bacciu1, A. Bocci2, E. Brondolin8, C. Calabria3, A. Carta1, S. Roy Chowdhury4, E. Corni5,
A. Di Florio3, S. Di Guida6, S. Dubey7, S. Dugad7, S. Dutta4, R. Fruhwirth8, V. Innocente2, V. Khristenko2,

M. Kortelainen2, P. Mal4, D. Menasce6, F. Pantaleo2, M. Pierini2, M. Rovere2, S. Sarkar4, V. Volkl2

University of Pisa1, CERN2, INFN Bari3, SINP4, INFN CNAF5,
INFN Milano Bicocca6, TIFR7 , Austrian Academy of Sciences8

felice@cern.ch

mailto:felice@cern.ch

2

• Today the CMS online farm

consists of ~26k Intel Xeon cores

– The current approach: one event per

logical core

• Pixel Tracks are not reconstructed

for all the events at the HLT

• This will be even more difficult at

higher pile-up

– More memory/event

CMS High-Level Trigger in Run 2 (1/2)

CMS High-Level Trigger in Run 2 (2/2)

3

full track reconstruction and

particle flow e.g. jets, tau

• Today the CMS online farm

consists of ~22k Intel Xeon cores

– The current approach: one event per

logical core

• Pixel Tracks are not reconstructed

for all the events at the HLT

• This will be even more difficult at

higher pile-up

– More memory/event

CMS and LHC Upgrade Schedule

4

CMS

pixel detector upgrade

Pixel Tracks

• Evaluation of Pixel Tracks combinatorial complexity could easily be dominated

by track density and become one of the bottlenecks of the High-Level Trigger

and offline reconstruction execution times.

• The CMS HLT farm and its offline computing infrastructure cannot rely on an

exponential growth of frequency guaranteed by the manufacturers.

• Hardware and algorithmic solutions have been studied

5

Pixel Tracks on GPUs during Run-3

PATATRACK
• Curiosity-driven project started in 2016 by a very small group of passionate people, right after I gave a GPU

programming course…

• CMS-specific project

• Started with no funding, no EPRs: people joined because it’s fun and
interesting to work at the forefront of technology

• Soon grown:
– CERN: F. Pantaleo, V. Innocente, M. Rovere, A. Bocci, M. Kortelainen,

M. Pierini, V. Volkl (SFT), V. Khristenko (IT, openlab)

– Austrian Academy of Sciences: E. Brondolin, R. Fruhwirth

– INFN Bari: A. Di Florio, C. Calabria

– INFN MiB: D. Menasce, S. Di Guida

– INFN CNAF: E. Corni

– SAHA: S. Sarkar, S. Dutta, S. Roy Chowdhury, P. Mal

– TIFR: S. Dugad, S. Dubey

– University of Pisa (Computer Science dep.): D. Bacciu, A. Carta

– Thanks also to the contributions of many short term students (Bachelor, Master, GSoC): Alessandro, Ann-Christine, Antonio, Dominik,
Jean-Loup, Konstantinos, Kunal, Luca, Panos, Roberto, Romina, Simone, Somesh

• Interests: algorithms, HPC, heterogeneous computing, machine learning, software eng., FPGAs…

• Lay the foundations of the online/offline reconstruction starting from 2020s (tracking, HGCal)

• Website under construction: PATATRACK , contact: patatrack-rd@cern.ch

• Meetings: https://indico.cern.ch/category/7804/

7

http://patatrack.web.cern.ch/patatrack/
mailto:patatrack-rd@cern.ch
https://indico.cern.ch/category/7804/

From RAW to Tracks during run 3

• Profit from the end-of-year upgrade of the Pixel to redesign the seeding code from scratch

– Exploiting the information coming from the 4th layer would improve efficiency, b-tag, IP resolution

• Trigger avg latency should stay within max average time

• Reproducibility of the results (equivalence CPU-GPU)

• Integration in the CMS software framework

• Targeting a complete demonstrator by 2018 H2

• E-group: gpu-cms-pixel-phase1

• Ingredients:

– Massive parallelism within the event

– Independence from thread ordering in algorithms

– Avoid useless data transfers and transformations

– Simple data formats optimized for parallel memory access

• Result:

– A GPU based application that takes RAW data and gives Tracks as result 8

Tracking at HLT

• Pixel hits are used for pixel tracks, vertices, seeding

• HLT Iterative tracking:

Iteration name Phase0 Seeds Phase1 Seeds Target Tracks

Pixel Tracks triplets quadruplets

Iter0 Pixel Tracks Pixel Tracks Prompt, high pT

Iter1 triplets quadruplets Prompt, low pT

Iter2 doublets triplets High pT, recovery

9

Algorithm Stack

10

Raw to Digi

Hits - Pixel Clusterizer

Hit Pairs + DNN Filter

CA-based Hit Chain Maker

Input, size linear with PU

Output, size ~linear with PU + dependence on fake rate

Riemann Fit

Overall status

• RAW to DIGI

– Complete

• Clustering

– Complete

• CPE

– Almost complete

• Doublet generation

– Ongoing

• Cellular Automaton

– Complete, aligned to CMSSW

• Riemann Fit

– CPU version implemented using Eigen (see talk by Roberto ~1month ago), GPU version missing

• Overall integration in CMSSW

– In preparation

11

Massive parallelization?

Our typical algorithms

• First create doublets from hits of pairs

• Take a third layer and propagate only the generated doublets

• Consider a fourth layer and propagate triplets

• Store found quadruplets and start from another pair of layers

13

Our typical algorithms

14

• First create doublets from hits of pairs

• Take a third layer and propagate only the generated doublets

• Consider a fourth layer and propagate triplets

• Store found quadruplets and start from another pair of layers

• Repeat until happy…

• Does this fit the idea of massively parallel computation? I don’t really think so…

Cellular Automaton (CA)

• The CA is a track seeding algorithm designed for parallel architectures

• It requires a list of layers and their pairings

– A graph of all the possible connections between layers is created

– Doublets aka Cells are created for each pair of layers (compatible with a region hypothesis)

– Fast computation of the compatibility between two connected cells

– No knowledge of the world outside adjacent neighboring cells required, making it easy to parallelize

• However this is not a static problem, not at all…

15

CAGraph of seeding layers

• Seeding layers interconnections

• Hit doublets for each layer pair can be computed independently by sets of threads

16

Integration studies

17

Integration in the Cloud and/or HLT Farm

• Different possible ideas depending on :
– the fraction of the events running tracking

– other parts of the reconstruction requiring a GPU

Today

Filter Units

Builder Units

or disk servers

CMS FE, Read-out Units

18

Integration in the Cloud/Farm

• Every FU is equipped with GPUs

– tracking for every event

Option 1

GPU Filter Units

Builder Units

or disk servers

19

• Rigid design
+ easy to implement

- Requires common acquisition, dimensioning etc

Integration in the Cloud/Farm

• A part of the farm is dedicated to a high density GPU cluster

• Tracks (or other physics objects like jets) are reconstructed on demand

Option 2

Filter Units

Builder Units

or disk servers

GPU Pixel
Trackers

20

• Flexible design
+ Expandible, easier to balance

- Requires more communication and software development (e.g. HPX, MPI)

FPGA Calo Reco

DL Inference Accelerators

Integration in the HLT Farm

• Builder units are equipped with GPUs:

– events with already reconstructed tracks are fed to FUs with GPUDirect

– Use the GPU DRAM in place of ramdisks for building events.

Option 3

Filter Units

GPU Builder Units

21

CMS FE, Read-out Units

• Very specific design
+ fast, independent of FU developments, integrated in readout

- Requires specific DAQ software development: GPU “seen” as a detector element

Tests

22

GPU Pixel Clusterizer

• New Clusterizer algorithm

• Excellent agreement with CMSSW

23

Raw To CPE

24

CA - Simulated Physics Performance PixelTracks

25

• CA tuned to have same efficiency as Triplet Propagation

• Efficiency significantly larger than 2016, especially in the forward region (|η|>1.5).

CA - Simulated Physics Performance PixelTracks

26

• Fake rate up to 40% lower than Triplet Propagation

• Two orders of magnitudes lower than 2016 tracking thanks to higher purity of
quadruplets wrt to triplets

Hardware on the bench

• We acquired a small machine for development and testing:

– 2 sockets x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (12 physical cores)

– 256GB system memory

– 8x GPUs NVIDIA GTX 1080Ti

– Total cost: 5x

27

Rate test

• The rate test consists in:

– preloading in host memory few hundreds events

– Assigning a host thread to a host core

– Assigning a host thread to a GPU

– Preallocating memory for each GPU for each of 8 cuda streams

– Filling a concurrent queue with event indices

– During the test, when a thread is idle it tries to pop from the queue a new event index:

• Data for that event are copied to the GPU (if the thread is associated to a GPU)

• processes the event (exactly same code executing on GPUs and CPUs)

• Copy back the result

– The test ran for approximately one hour

– At the end of the test the number of processed events per thread is measured, and the total rate can

be estimated

28

What happens in 10ms

29

Rate test

30

0

500000

1000000

1500000

2000000

2500000

3000000

Events processed by processing unit

Rate test

• Total rate measured:

– 8xGPU: 6527 Hz

– 24xCPUs: 613 Hz

• Number of nodes to reach 100kHz: ~14

• Total Price: 70x

• When running with only 24xCPUs

– Rate with 24xCPUs: 777 Hz

• Number of nodes to reach 100kHz: ~128

• Total Price: 320x

– Assuming an initial cost of 2.5 per node

31

0

1000

2000

3000

4000

5000

6000

7000

8000

Hybrid CPU-Only

E
ve

n
ts

 R
a
te

 (
H

z
)

System

CPUs

GPUs

Energy efficiency

• During the rate test power dissipated by CPUs and GPUs was measured every second

– Nvidia-smi for GPUs

– Turbostat for CPUs

• 8 GPUs: 1037W

– 6.29 Events per Joule

– 0.78 Events per Joule per GPU

• 24 CPUs in hybrid mode: 191W

– 3.2 Events per Joule

– 0.13 Events per Joule per core

• 24 CPUs in CPU-only test: 191W

– 4.05 Events per Joule

– 0.17 Events per Joule per core

• That is 1/3 more s in the energy bill when processing 100kHz input
32

0

5000

10000

15000

20000

25000

30000

Hybrid CPU only
P

o
w

er
 (

W
)

System

Algorithmic Innovation benefits offline reco

33

• CA track seeding at same level of the 2016 seeding

• More robust, smaller complexity vs PU than 2016 track seeding

despite the increased number of layer combinations involved in

the seeding phase with respect to the 2016 seeding

• ~25% faster track reconstruction wrt to 2016 tracking at avg

PU70

• Replacing the CMS Phase2 offline track seeding with sequential

CA

• Overall tracking 2x faster at PU200

• T(PU=200 – Phase2 detector) = 4xT(PU50 – 2017 detector)

• Detector and algorithms defeated combinatorial

complexity

• Innovation at algorithmic level often underestimated

• We believe algorithmic modernization should be more

encouraged and promoted by CMS

Conclusion

• Pixel Track seeding algorithms have been redesigned with high-throughput parallel

architectures in mind

• Improvements in performance may come even when running sequentially

– Factors at the HLT, tens of % in the offline, depending on the fraction of the code that use new algos

• Graph-based algorithm are very powerful

– By adding more Graph Theory sugar, steal some work from the track building and become more flexible

• The GPU and CPU algorithms run in CMSSW and produce the same bit-by-bit result

– Transition to GPUs@HLT during Run3 smoother

• Running Pixel Tracking at the CMS HLT for every event would become cheap @PU ~ 50 – 70

– Integration in the CMS High-Level Trigger farm under study

• DNNs under development for early-rejection of doublets based on their cluster shape and

track classification

34

Questions?

35

Back up

36

CA: R-z plane compatibility

• The compatibility between two cells is checked only if they share one hit

– AB and BC share hit B

• In the R-z plane a requirement is

alignment of the two cells:

– There is a maximum value of 𝜗 that

depends on the minimum value of the

momentum range that we would like

to explore

37

CA: x-y plane compatibility

• In the transverse plane, the intersection between the circle passing through the hits
forming the two cells and
the beamspot is checked:

– They intersect if the distance
between the centers d(C,C’)
satisfies:
r’-r < d(C,C’) < r’+r

– Since it is a Out – In propagation,
a tolerance is added to
the beamspot radius (in red)

• One could also ask for a minimum
value of transverse momentum
and reject low values of r’

38

• Hits on different layers

• Need to match them and create quadruplets

• Create a modular pattern and reapply it iteratively

39

RMS HEP Algorithm

RMS HEP Algorithm

• First create doublets from hits of pairs

40

RMS HEP Algorithm

• First create doublets from hits of pairs

• Take a third layer and propagate only the generated doublets

41

RMS HEP Algorithm

This kind of algorithm is not very suitable for GPUs:

• Absence of massive parallelism

• Poor data locality

• Synchronizations due to iterative process

• Very Sparse and dynamic problem (that’s the hardest part, still unsolved)

• Parallelization does not mean making a sequential algorithm run in parallel

– It requires a deep understanding of the problem, renovation at algorithmic level, understanding of the
computation and dependencies

The algorithm was redesigned from scratch getting inspiration from Conway’s Game of Life

• Traditional Cellular Automata excluded because 2x slower

– quadruplets by triplets sharing a doublet

42

4343

T=0T=1T=2

Cells Connection
blockIdx.x and threadIdx.x = Cell id in a LayerPair

Each cell asks its

innermost hits for

cells to check

compatibility with.

44

blockIdx.y =

LayerPairIndex

[0,13)

Quadruplets finding
blockIdx.x and threadIdx.x = Cell id in a Root LayerPair

blockIdx.y =

LayerPairIndex in

RootLayerPairs

Each cell on a root

layer pair will

perform a parallel

DFS of depth = 4

following outer

neighbors.

45

Evolution

• If two cells satisfy all the compatibility requirements they are said to be neighbors and

their state is set to 0

• In the evolution stage, their state increases in discrete generations if there is an outer

neighbor with the same state

• At the end of the evolution stage

the state of the cells will contain the

information about the length

• If one is interested in quadruplets,

there will be surely one starting from

a state 2 cell, pentuplets state 3, etc.

46

