
PATATRACK 
Accelerated Pixel Tracks at the HLT starting from Run 3

D. Bacciu1, A. Bocci2, E. Brondolin8, C. Calabria3, A. Carta1, S. Roy Chowdhury4, E. Corni5, 
A. Di Florio3,  S. Di Guida6,  S. Dubey7, S. Dugad7, S. Dutta4, R. Fruhwirth8, V. Innocente2, V. Khristenko2, 

M. Kortelainen2, P. Mal4, D. Menasce6, F. Pantaleo2, M. Pierini2, M. Rovere2, S. Sarkar4, V. Volkl2

University of  Pisa1, CERN2, INFN Bari3, SINP4, INFN CNAF5, 
INFN Milano Bicocca6, TIFR7 , Austrian Academy of  Sciences8

felice@cern.ch

mailto:felice@cern.ch


2

• Today the CMS online farm 

consists of  ~26k Intel Xeon cores

– The current approach: one event per 

logical core

• Pixel Tracks are not reconstructed 

for all the events at the HLT

• This will be even more difficult at 

higher pile-up

– More memory/event

CMS High-Level Trigger in Run 2 (1/2)



CMS High-Level Trigger in Run 2 (2/2)
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CMS and LHC Upgrade Schedule
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CMS 

pixel detector upgrade



Pixel Tracks

• Evaluation of  Pixel Tracks combinatorial complexity could easily be dominated 

by track density and become one of  the bottlenecks of  the High-Level Trigger 

and offline reconstruction execution times. 

• The CMS HLT farm and its offline computing infrastructure cannot rely on an 

exponential growth of  frequency guaranteed by the manufacturers.

• Hardware and algorithmic solutions have been studied

5



Pixel Tracks on GPUs during Run-3



PATATRACK
• Curiosity-driven project started in 2016 by a very small group of  passionate people, right after I gave a GPU 

programming course… 

• CMS-specific project

• Started with no funding, no EPRs: people joined because it’s fun and 
interesting to work at the forefront of  technology

• Soon grown:
– CERN: F. Pantaleo, V. Innocente, M. Rovere, A. Bocci, M. Kortelainen, 

M. Pierini, V. Volkl (SFT), V. Khristenko (IT, openlab)

– Austrian Academy of  Sciences: E. Brondolin, R. Fruhwirth

– INFN Bari: A. Di Florio, C. Calabria

– INFN MiB: D. Menasce, S. Di Guida

– INFN CNAF: E. Corni

– SAHA: S. Sarkar, S. Dutta, S. Roy Chowdhury, P. Mal

– TIFR: S. Dugad, S. Dubey

– University of  Pisa (Computer Science dep.): D. Bacciu, A. Carta

– Thanks also to the contributions of  many short term students (Bachelor, Master, GSoC): Alessandro, Ann-Christine, Antonio, Dominik, 
Jean-Loup, Konstantinos, Kunal, Luca, Panos, Roberto, Romina, Simone, Somesh

• Interests: algorithms, HPC, heterogeneous computing, machine learning, software eng., FPGAs…

• Lay the foundations of  the online/offline reconstruction starting from 2020s (tracking, HGCal)

• Website under construction: PATATRACK , contact: patatrack-rd@cern.ch

• Meetings: https://indico.cern.ch/category/7804/
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From RAW to Tracks during run 3

• Profit from the end-of-year upgrade of  the Pixel to redesign the seeding code from scratch

– Exploiting  the information coming from the 4th layer would improve efficiency, b-tag, IP resolution

• Trigger avg latency should stay within max average time

• Reproducibility of  the results (equivalence CPU-GPU)

• Integration in the CMS software framework

• Targeting a complete demonstrator by 2018 H2

• E-group: gpu-cms-pixel-phase1

• Ingredients:

– Massive parallelism within the event

– Independence from thread ordering in algorithms

– Avoid useless data transfers and transformations

– Simple data formats optimized for parallel memory access

• Result:

– A GPU based application that takes RAW data and gives Tracks as result 8



Tracking at HLT

• Pixel hits are used for pixel tracks, vertices, seeding

• HLT Iterative tracking: 

Iteration name Phase0 Seeds Phase1 Seeds Target Tracks

Pixel Tracks triplets quadruplets

Iter0 Pixel Tracks Pixel Tracks Prompt, high pT

Iter1 triplets quadruplets Prompt, low pT

Iter2 doublets triplets High pT, recovery
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Algorithm Stack
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Raw to Digi

Hits - Pixel Clusterizer

Hit Pairs + DNN Filter

CA-based Hit Chain Maker

Input, size linear with PU

Output, size ~linear with PU + dependence on fake rate

Riemann Fit



Overall status

• RAW to DIGI 

– Complete

• Clustering

– Complete

• CPE

– Almost complete 

• Doublet generation

– Ongoing

• Cellular Automaton

– Complete, aligned to CMSSW

• Riemann Fit

– CPU version implemented using Eigen (see talk by Roberto ~1month ago), GPU version missing

• Overall integration in CMSSW

– In preparation
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Massive parallelization?



Our typical algorithms

• First create doublets from hits of  pairs

• Take a third layer and propagate only the generated doublets

• Consider a fourth layer and propagate triplets

• Store found quadruplets and start from another pair of  layers
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Our typical algorithms
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• First create doublets from hits of  pairs

• Take a third layer and propagate only the generated doublets

• Consider a fourth layer and propagate triplets

• Store found quadruplets and start from another pair of  layers

• Repeat until happy…

• Does this fit the idea of  massively parallel computation? I don’t really think so…



Cellular Automaton (CA)

• The CA is a track seeding algorithm designed for parallel architectures

• It requires a list of  layers and their pairings

– A graph of  all the possible connections between layers is created

– Doublets aka Cells are created for each pair of  layers (compatible with a region hypothesis)

– Fast computation of  the compatibility between two connected cells

– No knowledge of  the world outside adjacent neighboring cells required, making it easy to parallelize

• However this is not a static problem, not at all…
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CAGraph of  seeding layers

• Seeding layers interconnections

• Hit doublets for each layer pair can be computed independently by sets of  threads
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Integration studies
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Integration in the Cloud and/or HLT Farm

• Different possible ideas depending on :
– the fraction of  the events running tracking 

– other parts of  the reconstruction requiring a GPU

Today

Filter Units

Builder Units

or disk servers

CMS FE, Read-out Units
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Integration in the Cloud/Farm

• Every FU is equipped with GPUs

– tracking for every event

Option 1

GPU Filter Units

Builder Units

or disk servers
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• Rigid design
+ easy to implement

- Requires common acquisition, dimensioning etc



Integration in the Cloud/Farm

• A part of  the farm is dedicated to a high density GPU cluster

• Tracks (or other physics objects like jets) are reconstructed on demand

Option 2

Filter Units

Builder Units

or disk servers

GPU Pixel 
Trackers
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• Flexible design
+ Expandible, easier to balance 

- Requires more communication and software development (e.g. HPX, MPI)

FPGA Calo Reco

DL Inference Accelerators



Integration in the HLT Farm

• Builder units are equipped with GPUs: 

– events with already reconstructed tracks are fed to FUs with GPUDirect

– Use the GPU DRAM in place of  ramdisks for building events.

Option 3

Filter Units

GPU Builder Units
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CMS FE, Read-out Units

• Very specific design
+ fast, independent of  FU  developments, integrated in readout

- Requires specific DAQ software development: GPU “seen” as a detector element



Tests

22



GPU Pixel Clusterizer

• New Clusterizer algorithm

• Excellent agreement with CMSSW
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Raw To CPE
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CA - Simulated Physics Performance PixelTracks
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• CA tuned to have same efficiency as Triplet Propagation

• Efficiency significantly larger than 2016, especially in the forward region (|η|>1.5).



CA - Simulated Physics Performance PixelTracks
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• Fake rate up to 40% lower than Triplet Propagation

• Two orders of  magnitudes lower than 2016 tracking thanks to higher purity of  
quadruplets wrt to triplets



Hardware on the bench

• We acquired a small machine for development and testing:

– 2 sockets x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (12 physical cores)

– 256GB system memory

– 8x GPUs NVIDIA GTX 1080Ti

– Total cost: 5x
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Rate test

• The rate test consists in:

– preloading in host memory few hundreds events

– Assigning a host thread to a host core

– Assigning a host thread to a GPU

– Preallocating memory for each GPU for each of  8 cuda streams

– Filling a concurrent queue with event indices 

– During the test, when a thread is idle it tries to pop from the queue a new event index:

• Data for that event are copied to the GPU (if  the thread is associated to a GPU)

• processes the event (exactly same code executing on GPUs and CPUs)

• Copy back the result

– The test ran for approximately one hour

– At the end of  the test the number of  processed events per thread is measured, and the total rate can 

be estimated
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What happens in 10ms
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Rate test

30

0

500000

1000000

1500000

2000000

2500000

3000000

Events processed by processing unit



Rate test

• Total rate measured: 

– 8xGPU: 6527 Hz

– 24xCPUs: 613 Hz

• Number of  nodes to reach 100kHz: ~14

• Total Price: 70x 

• When running with only 24xCPUs

– Rate with 24xCPUs: 777 Hz

• Number of  nodes to reach 100kHz: ~128

• Total Price: 320x

– Assuming an initial cost of  2.5      per node 
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Energy efficiency

• During the rate test power dissipated by CPUs and GPUs was measured every second

– Nvidia-smi for GPUs

– Turbostat for CPUs

• 8 GPUs: 1037W

– 6.29 Events per Joule

– 0.78 Events per Joule per GPU

• 24 CPUs in hybrid mode: 191W

– 3.2 Events per Joule

– 0.13 Events per Joule per core

• 24 CPUs in CPU-only test: 191W

– 4.05 Events per Joule

– 0.17 Events per Joule per core

• That is 1/3 more      s in the energy bill when processing 100kHz input
32
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Algorithmic Innovation benefits offline reco
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• CA track seeding at same level of  the 2016 seeding 

• More robust, smaller complexity vs PU than 2016 track seeding 

despite the increased number of  layer combinations involved in 

the seeding phase with respect to the 2016 seeding

• ~25% faster track reconstruction wrt to 2016 tracking at avg

PU70

• Replacing the CMS Phase2 offline track seeding with sequential 

CA

• Overall tracking 2x faster at PU200

• T(PU=200 – Phase2 detector) = 4xT(PU50 – 2017 detector)

• Detector and algorithms defeated combinatorial 

complexity

• Innovation at algorithmic level often underestimated

• We believe algorithmic modernization should be more 

encouraged and promoted by CMS



Conclusion

• Pixel Track seeding algorithms have been redesigned with high-throughput parallel 

architectures in mind

• Improvements in performance may come even when running sequentially

– Factors at the HLT, tens of  % in the offline, depending on the fraction of  the code that use new algos

• Graph-based algorithm are very powerful

– By adding more Graph Theory sugar,  steal some work from the track building  and become more flexible

• The GPU and CPU algorithms run in CMSSW and produce the same bit-by-bit result

– Transition to GPUs@HLT during Run3 smoother

• Running Pixel Tracking at the CMS HLT for every event would become cheap @PU ~ 50 – 70

– Integration in the CMS High-Level Trigger farm under study

• DNNs under development for early-rejection of  doublets based on their cluster shape and 

track classification
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Questions?
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Back up
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CA: R-z plane compatibility

• The compatibility between two cells is checked only if  they share one hit

– AB and BC share hit B

• In the R-z plane a requirement is 

alignment of  the two cells:

– There is a maximum value of  𝜗 that 

depends on the minimum value of  the 

momentum range that we would like

to explore
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CA: x-y plane compatibility

• In the transverse plane, the intersection between the circle passing through the hits 
forming the two cells and
the beamspot is checked:

– They intersect if  the distance
between the centers d(C,C’)
satisfies:
r’-r < d(C,C’) < r’+r

– Since it is a Out – In propagation, 
a tolerance is added to 
the beamspot radius (in red)

• One could also ask for a minimum
value of  transverse momentum 
and reject low values of  r’ 
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• Hits on different layers 

• Need to match them and create quadruplets

• Create a modular pattern and reapply it iteratively
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RMS HEP Algorithm



RMS HEP Algorithm

• First create doublets from hits of  pairs
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RMS HEP Algorithm

• First create doublets from hits of  pairs

• Take a third layer and propagate only the generated doublets
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RMS HEP Algorithm

This kind of  algorithm is not very suitable for GPUs:

• Absence of  massive parallelism

• Poor data locality

• Synchronizations due to iterative process

• Very Sparse and dynamic problem (that’s the hardest part, still unsolved)

• Parallelization does not mean making a sequential algorithm run in parallel

– It requires a deep understanding of  the problem, renovation at algorithmic level, understanding of  the 
computation and dependencies

The algorithm was redesigned from scratch getting inspiration from Conway’s Game of  Life

• Traditional Cellular Automata excluded because 2x slower 

– quadruplets by triplets sharing a doublet
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Cells Connection
blockIdx.x and threadIdx.x = Cell id in a LayerPair

Each cell asks its 

innermost hits for 

cells to check 

compatibility with.
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blockIdx.y = 

LayerPairIndex

[0,13)



Quadruplets finding
blockIdx.x and threadIdx.x = Cell id in a Root LayerPair

blockIdx.y = 

LayerPairIndex in 

RootLayerPairs

Each cell on a root 

layer pair will 

perform a parallel 

DFS of  depth = 4 

following outer 

neighbors.

45



Evolution

• If  two cells satisfy all the compatibility requirements they are said to be neighbors and 

their state is set to 0

• In the evolution stage, their state increases in discrete generations if  there is an outer 

neighbor with the same state

• At the end of  the evolution stage 

the state of  the cells will contain the

information about the length

• If  one is interested in quadruplets, 

there will be surely one starting from 

a state 2 cell, pentuplets state 3, etc.
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