HEP.TrkX project

Software and Computing R&D 16 Oct 2017

https://heptrkx.github.io/

Outline

- Challenge of Charged Particle Tracking
- Pattern Recognition in Data Science
- The HEP.TrkX project
- Several approaches to the problem
- Outlook

In a Nutshell

- · Particle trajectory bended in a solenoid magnetic field
- Curvature is a proxy to momentum
- Particle ionize silicon pixel and strip throughout several concentric layers
- Thousands of sparse hits
- Lots of hit pollution from low momentum, secondary particles

Seeding

Kalman Filter

⁴ single-sided

outer barrel layers

2 double-sided outer barrel layers

4 inner barrel layers

- **Explosion in hit combinatorics** in both seeding and stepping pattern recognition
- Highly time consuming task in extracting physics content from LHC data

Complexity and Ambiguity

The future is with **x10 more hits**

High Luminosity LHC The Challenge

HL-LHC Challenge

<PU>=140-200 10x more hits Circa 2025

- CPU time extrapolation into HL-LHC era far surpasses growth in computing budget
- Need for faster algorithms
- Approximation allowed in the trigger

Cost of Tracking

- Charged particle track reconstruction is one of the most CPU consuming task in event reconstruction
- Optimizations (to fit in computational budgets) mostly saturated
- Large fraction of CPU required in the HLT. Cannot perform tracking inclusively at CMS and ATLAS.

Fast Hardware Tracking

BERKELEY I AB

HEP Trk.X, CMS R&D, J.-R. Vlimant

- Track trigger implementation for Trigger upgrades development on-going
- Several approaches investigated
- Dedicated hardware is the key to fast computation.
- Not applicable for offline processing unless by adopting heterogeneous hardware.

Controls read-out of candidates

See https://ctdwit2017.lal.in2p3.fr/

Bottom Line

Current algorithms for tracking are highly performant physics-wise and scale badly computation-wise

Faster implementations are possible with dedicated hardware

Think outside the box for new methods

Pattern Recognition With Deep Learning

Scene Labeling

Farabet et al. ICML 2012, PAMI 2013

Assign hits to track candidates

Scene Captioning

Karpathy, Fei-Fei, CVPR 2015

Compose tracks explanation from image

Text Translation

[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.

From sequence of hits on layer to sequence of hits on track

Similarities and Challenges

- Particle tracking is an active field in data science
 - Different type of particles
 - Not oriented to code performance
- Making a track is a pattern recognition problem
 - Not the usual one in data science
- Tracking data is much sparser than regular images
 - > Test and adapt methods
- Tracking device may have up to 10M of channels
 - Scale up deep learning models
 - Perform tracking by sector
- Underlying geometry of sensor more complex
 - More than a simple picture
 - Barrels and end-caps are not the usual pictures
- Not the regular type of sequences
 - Cover new ground of sequence processing
- Defining an adequate cost function
 - Tracking algorithms are optimized by proxy
- A solution must be performant during inference ...

HEP.TrkX Project

https://heptrkx.github.io/

- Pilot project funded by DOE ASCR and COMP HEP
- Part of HEP CCE
- Mission
 - Explore deep learning techniques for track formation
- People
 - LBL : Paolo Calafiura, Steve Farrell, Mayur Mudigonda, Prabhat
 - **FNAL** : Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris
 - Caltech : Dustin Anderson, Josh Bendavid, Pietro Perona, Maria Spiropulu, Jean-Roch Vlimant, Stephan Zheng

Possible Application to Tracking

Track candidate

- → Finding the hits that belong to a track
- → Seed + hits \rightarrow tracks

Track parameters

- Measuring the physic quantity of tracks
- Hits \rightarrow track kinematics

Seeding

- Putting together hits into tracks
- Hits \rightarrow track

Vertex Finding

- Finding vertex from hits image
- $\textbf{\textbf{+}Hits} \rightarrow vertex$

Datasets

A) Highly simplified model* in 2D or 3D

B) More realistic sample from
2D CtD track RAMP* (https://ctdwit2017.lal.in2p3.fr/)
3D ACTS* (https://gitlab.cern.ch/acts)

C) Full simulation or real data

* : this talk

Seeded Track Candidate Making

Seeded Pattern Prediction

- Hits on first 3 layers are used as seed
- Predict the position of the rest of the hits on all layers

LSTM ≡ Kalman Filter

Seeded Pattern Recognition Insights

HEP Trk.X, CMS R&D, J.-R. Vlimant

- For a simplified track models, predicting the track pattern from the seed works
 - In 2D and 3D
 - With some level of noise
 - > With other tracks present
 - On layers with increasing number of pixels
- Several other architectures tried
 - Convolutional neural nets (no LSTM)
 - Convolutional auto-encoder
 - > Bi-directional LSTM
 - Prediction on next layer with LSTM

Tracking RAMP at CtD

S. Farrell : Best solution in the Machine Learning category https://indico.cern.ch/event/577003/contributions/2509988/

- Down-sampling layer to 100 bins
- LSTM for hit assignment
- 92% efficiency
- Robust to holes and missing hits

- Increased granularity in "road"
- LSTM for hit assignment
- 95% efficiency

Tracking on ACTS

- Down-sampling layers per ACTS volume
- LSTM for hit assignment
- Promising results of applying a simplistic model to more realistic dataset
- Further work on-going

Track Parameters Measurement

Track Parameter Estimation

Multi-Track Prediction with LSTM

- Hit pattern from multiple track processed through convolutional layers
- LSTM Cell runs for as many tracks the model can predict.

Prediction Track Covariance

Model is modified to predict a covariance matrix for which there is no ground truth, but is used with the modified loss function

$$L(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{\Sigma}| + (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))$$

Track Parameters Uncertainty

Representation of track slope, intersect and respective uncertainties

Pattern Recognition / Seeding

Pattern Recognition

Pattern Recognition with LSTM

- Input sequence of hits per layers (one sequence per layer)
 - > One LSTM cell per layer
- Output sequence of hits per candidates
 - Final LSTM runs for as many candidates the model can predict

- Still work in progress
- Restricted to 4 layers (with seeding in mind)
- Work to some extend

Hit Assignment with GRU

- Input a sequence of points r,z,ϕ coordinate
- Output the probability to below to track N
- Tracking efficiency is not a exact metric. Does depend on where you cut on probability when dealing with multiple hit-track association. On-going work.

Vertex Finding

LeNet Vertex Finding

- Look at the hit-map on the first 3 layers of the pixel detector, using convolutional model similar to LeNet
- Output a binned distribution of the primary vertex "z"
- Needs more work to converge

Conclusions

- Pilot project to explore new ideas for track reconstruction
- Promising insights from simplistic and more realistic ACTS datasets
- Keep an open mind to new approaches
- Further on with more realistic datasets

Backup

Long Short Term Memory - LSTM

Breakthrough in sequence processing by carrying over an internal state, "memory" of the previous items in the sequence, allowing for long range correlation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Tracking Not In a Nutshell

- Several Times
- Hits preparation
- Seeding
- Pattern recognition
- Track fitting
- Track cleaning

Hit Preparation

- Calculate the hit position from barycenter of charge deposits
- Use of neural net classifier to split cluster in ATLAS
- Access to trajectory local parameter from cluster shape
- Remove hits from previous tracking iterations
- HL-LHC design include double layers giving more constraints on the local trajectory parameters

Example of cluster split

Seeding

- Combinatorics of 2 or 3 hits with tight/loose constraints to the beam spot or vertex
- Seed cleaning/purity plays in an important in reducing the CPU requirements of sub-sequent steps
 - Consider pixel cluster shape and charge to remove incompatible seeds
- Initial track parameters from helix fit

Pattern Recognition

- Use of the Kalman filter formalism with weight matrix
 - Identify possible next layers from geometrical considerations
- Combinatorics with compatibles hits, retain N best candidates
- No smoothing procedure
- Resilient to missing modules
- Hits are mostly belonging to one track and one track only
- Hit sharing can happen in dense events, in the innermost part

Kalman Filter

- Trajectory state propagation done either
 - Analytical (helix, fastest)
 - Stepping helix (fast)
 - Runge-Kutta (slow)
- Material effect added to
 trajectory state covariance
- Projection matrix of local helix parameters onto module surface
 - Trivial expression due to local helix parametrisation
- Hits covariance matrix for pixel and stereo hits properly formed
 - Issue with strip hits and longitudinal error being non gaussian (square)

 $K_{k} = C_{k|k-1}H_{k}^{\top} (V_{k} + H_{k}C_{k|k-1}H_{k}^{\top})^{-1}$ $p_{k|k} = p_{k|k-1} + K_{k} (m_{k} - H_{k}p_{k|k-1})$ $C_{k|k-1} = (I - K_{k}H_{k})C_{k|k-1}$

 \boldsymbol{H}_k is the projection matrix

 \boldsymbol{V}_k is the hit covariance matrix

 $p_{i|j}$ is the trajectory state at i given j

 $C_{i|j}$ is the trajectory state covariance matrix at i given j

Track Fitting

- Use of the Kalman filter formalism with weight matrix
- Use of smoothing procedure to identify outliers
- Field non uniformity are taken into account
- Detector alignment taken into account

Cleaning, Selection

- Track quality estimated using ranking or classification method
 →Use of MVA
- Hits from high quality tracks are remove for the next iterations where applicable

A Charged Particle Journey

First order effect : electromagnetic elastic interaction of the charge particle with nuclei (heavy and multiply charged) and electrons (light and single charged)

Second order effect : inelastic interaction with nuclei.

Magnetic Field

- Magnetic fieldB acts on charged particles in motion : Lorentz Force
- $Z \qquad \vec{B} \qquad \vec{F} \qquad \vec{P} \qquad \vec{U} \qquad \vec{F} = q \cdot (\vec{U} \times \vec{B})$
- The solution in uniform magnetic field is an helix along the field : 5 parameters
 - Helix radius proportional to the component of momentum perpendicular to B
 - Separate particles in dense environment
 - Bending induces radiation : bremsstrahlung
 - The magnetic field has to be known to a good precision for accurate tracking of particle

Multiple Scattering

- **Deflection on nuclei** (effect from electron are negligible)
- Addition of scattering processes
- Gaussian approximation valid for substantial material traversed

Gaussian Approximation

$$\theta^2 = \left(\frac{13.6MeV}{\beta cp}\right)^2 * \frac{x}{X_0}$$

- β -particle velocity
- ρ material density
- P particle momenta

Bremsstrahlung

- Electromagnetic radiation of charged particles under acceleration due to nuclei charge
- Significant at low mass or high energy
- Discontinuity in energy loss spectrum due to photon emission and track curvature
- Can be observed as kink in the trajectory or presence of collinear energetic photons

Energy Loss

 Momentum transfer to electrons when traversing material (effect of nuclei is negligible

$$dE / dx = k_1 \frac{Z}{A} \frac{1}{\beta^2} \rho \left(\ln \left(\frac{2m_e c^2 \beta^2}{I(1-\beta^2)} \right) - \beta^2 - \frac{\delta}{2} \right)$$

- β -particle velocity
- ρ material density
- Z atomic number of absorber
- A mass number of absorber
- I mean excitation energy
- δ density effect correction factor material dependent and β dependent

 Energy loss at low momentum depends on mass : can be used as mass spectrometer

Summary on Material Effects

- Collective effects can be estimated statistically and taken into account in how they modify the trajectory
- Bremstrahlung and nuclear interactions significantly distort trajectories

Scene Labeling

From talk of LeCunn at CERN

Scene Labeling

LeCunn Seminar at CERN

Photo by Pier Marco Tacca/Getty Images

