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3 Capsule history of force field symmetries

I Newton: Gravitational field, (inverse square law) central force
I Coulomb: By analogy, electric force is the same (i.e. central, 1/r2)
I Ampere: How can compass needle near a current figure out which way to

turn? Magnetic field is pseudo-vector. A right hand rule is somehow
built into E&M and into the compass needle.

I The upshot: by introducing pseudo-vector magnetic field, E&M respects
reflection symmetry. This was the first step toward the grand unification
of all forces.

I Lee, Yang, etc: A particle with spin (pseudo-vector), say “up”, can decay
more up than down (vector);

I i.e. the decay vector is parallel (not anti-parallel) to the spin pseudo-vector,
I viewed in a mirror, this statement is reversed.
I i.e. weak decay force violates reflection symmetry (P).

I Fitch, Cronin, etc: standard model violates both parity (P) and time
reversal (T), so protons, etc. must have both MDM and EDM

I Current task: How to exploit the implied symmetry violation to measure
the EDM of proton, electron, etc?



4 Why all-electric ring?

I “Frozen spin” operation in all-electric storage ring is only
possible with electrons or protons—by chance their anomalous
magnetic moment values are appropriate. The “magic”
kinetic energies are 14.5 MeV for e, 233 MeV for p.

I Beam direction reversal is possible in all-electric storage ring,
with all parameters except injection direction held fixed. This
is crucial for reducing systematic errors.



5 EDM Sensitive Configuration—modern day Ampère experiment

proton orbit

proton spin

negative point charge
(Large) central 

E x d torque

md
E

Proton is "magic" with all three spin components "frozen" (relative to orbit)

EDM MDM
Do proton spins tip up or down?

And by how much?

Two issues:
I Can the tipping angle be measurably large for plausibly large EDM,

such as 10−30 e-cm? With modern technology, yes
I Can the symmetry be adequately preserved when the idealized

configuration above is approximated in the laboratory? This is the
main issue



6 Two experiments that “could not be done”
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FIG. 2. Measured asymmetry ǫ(ϕs) of Eq. (8) fitted with
ǫ(ϕs) of Eq. (9) to extract amplitude ǫ̃ and phase ϕ̃, using
the yields N+,−

U,D (ϕs) of Fig. 1 (b) for a single turn interval of

∆n = 106 turns at a measurement time of 2.6 s < t < 3.9 s.

tion is assumed to be constant within the duration of the
turn interval ∆n (1.3 s).

In every turn interval, the parameters ǫ̃ and ϕ̃ of
Eq. (9) are fitted to the measured asymmetry of Eq. (8),
and the procedure is repeated for several values of ν0

s in
a certain range around νs = γG (see e.g., Fig. 5 of [13]).
The fits, for which ǫ̃ becomes maximal (an example is
shown in Fig. 2), yield a first approximation of νs with a
precision of about 10−6.

In order to determine the spin tune more accurately,
the phase parameter ϕ̃ is determined from the fits with
Eq. (9) for all turn intervals of a complete cycle. A fixed
common spin tune νfix

s = −0.160975407 is chosen such
that the phase variation ϕ̃(n) is minimized, as shown in
Fig. 3 (a). The spin tune as a function of turn number
is given by

νs(n) = νfix
s +

1
2π

dϕ̃(n)
dn

= νfix
s + ∆νs(n) , (10)

independent of the particular choice of νfix
s , because a dif-

ferently chosen νfix
s is compensated for by a corresponding

change in ∆νs(n).
Without any assumption about the functional form of

the phase dependence in Fig. 3 (a), one can calculate
the spin tune deviation ∆νs(n) from νfix

s by evaluating
dϕ̃(n)/dn using two consecutive phase measurements,
corresponding to a measurement time of 2.6 s. In this
case, at early times the statistical accuracy of the spin
tune reaches σνs

= 1.3 · 10−8, and toward the end of the
cycle σνs

= 3 · 10−8, due to the decreasing event rate.
An even higher precision of the spin tune is obtained by

exploiting the observed parabolic phase dependence, fit-
ted to ϕ̃(n) in Fig. 3 (a), which indicates that the actual
spin tune changes linearly as a function of turn number.
As displayed in Fig. 3 (b), in a single 100 s long measure-
ment, the highest precision is reached at t ≈ 38 s with an
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FIG. 3. (a): Phase ϕ̃ as a function of turn number n for
all 72 turn intervals of a single measurement cycle for νfix

s =
−0.160975407, together with a parabolic fit. (b): Deviation
∆νs of the spin tune from νfix

s as a function of turn number in
the cycle. At t ≈ 38 s, the interpolated spin tune amounts to
νs = (−16097540771.7 ± 9.7) × 10−11. The error band shows
the statistical error obtained from the parabolic fit, shown in
panel (a).

error of the interpolated spin tune of σνs
= 9.7× 10−11.

The achieved precision of the spin tune measurements
compares well with the statistical expectation. The er-
ror of a frequency measurement is approximately given
by σf =

√
6/N/(πε̃T ), where N is the total number

of recorded events, ε̃ ≈ 0.27 is the oscillation ampli-
tude of Eq. (9), and T the measurement duration. In
a 2.6 s time interval with an initial detector rate of
5000 s−1, one would expect an error of the spin tune
of σνs

= σfs
/frev ≈ 1 · 10−8, and, during a 100 s mea-

surement with N ≈ 200000 recorded events, an error of
σνs

≈ 10−10.

The new method can be used to monitor the stability of
the spin tune in the accelerator for long periods of time.
As shown in Fig. 4, the spin tune variations from cycle
to cycle are of the same order (10−8 to 10−9) as those
within a cycle [Fig. 3 (b)], illustrating that the spin tune
determination provides a new precision tool for the inves-
tigation of systematic effects in a machine. It is remark-
able that COSY is stable to such a precision, because it
was not designed to provide stability below ≈ 10−6 with
respect to, e.g., magnetic fields, closed-orbit corrections
and power supplies. Presently investigations are under-
way to locate the origins of the observed variations in
order to develop feedback systems and other means to
minimize them further.

Several systematic effects that may affect the spin tune

The neutron storage ring under construction at Preliminary results from the Bonn neutron 
the University of Bonn. Its 1.2 m diameter storage ring. After some losses in the first few 
superconducting magnet gives a peak field of minutes, the level of neutrons begins to 
3.5 T and enables neutrons to be stored for decrease simply as a resuit ofbeta decay, with a 
some 20 minutes at an energy of 2 x W~6 eV. half life of some 15 minutes. This will enable 
The ring is now in opération at the Institut Laue- the lifetime of the neutron to be measured 
Langevin research reactor, Grenoble. accurately. 

(Photo Bonn) 

taking its particles from the low energy 
région of the Maxwellian distribution 
of neutrons emerging from the reactor, 
a précise velocity sélection would 
reduce the number of neutrons to an 
unacceptable level. The Bonn storage 
ring therefore has to work with a wide 
momentum spread ( A p/p of about 3), 
with the resuit that many 'stopbands' 
and résonance effects have to be con-
fronted. 

To stabilise the neutron orbits and 
minimise losses due to thèse effects, 
the periodic sextupole field is sup-
plemented by a non-linear decapole 
contribution, which makes the beta-
tron frequency amplitude-dependent. 
Particle oscillations, which occur with 
increasing amplitudes in thèse 
résonance régions, can be controlled. 

Only one spin component of the 
neutrons, with the spin parallel to the 
magnetic field, can be confined, and 
care has to be taken in the design of 
the field to avoid spin flips so as to 
maintain the number of stored 
neutrons. 

Neutrons from the reactor are 
guided and injected into the ring by a 
system of bent nickel-coated glass 
mirrors. Neutrons passing througH 
matter have an effective refractive in­
dex and, under the right conditions, 
total reflection may occur, as with 
electromagnetic radiation. The injec­
tion system can be moved out of the 
storage zone by a pneumatic mecha-
nism which opérâtes fast enough to 
allow injection of a single turn. The 
stored neutrons are detected by mov-
ing helium-3 counters into the ring. 

The whole apparatus, including the 
superconducting magnet, was con-
structed at Bonn and then moved to 
ILL. Within three weeks neutrons were 
successfully stored at the first attempt. 
After some losses in the first few minu­
tes of each storage, the remaining neu­
tron intensity decreases simply as a re­
suit of beta decay, which has a half-life 
of about fifteen minutes. Neutrons are 
still détectable after twenty minutes. 

366 

Figure: COSY, Juelich, Eversmann et al.: (Pseudo-)frozen spin
deuterons, and Bonn, Paul et al.: neutron storage ring



7 Precision limit—space domain method

I Measure difference of beam polarization orientation at end of
run minus at beginning of run.

I p-Carbon left/right scattering asymmetry polarimetry.

I This polarimetry is well-tested, “guaranteed” to work,

I but also “destructive” (measurement consumes beam)

particle |delec| current error after 104

upper limit pairs of runs
e-cm e-cm

neutron 3× 10−26

proton 8× 10−25 ±10−29

electron 10−28 ±10−29



8 Resonant polarimetry

I Planned Stern-Gerlach electron polarimetry test(s)

I R. Talman, LEPP, Cornell University;
B. Roberts, University of New Mexico;
J. Grames, A. Hofler, R. Kazimi, M. Poelker, R. Suleiman;
Thomas Jefferson National Laboratory
2017 International Workshop on Polarized Sources,
Targets & Polarimetry,
Oct 16-20, 2017,

DE-SC0017120  8/23/2017 

Split-Cylinder Resonant Electron Polarimeter:    

An initial prototype has been constructed, and tested. 

 

 

Outer cylinder ID: 2.36”,  OD: 2.64, Length: 2.8” 

Inner split ring resonator ID: .85” OD .98”, split width .062”, length: 2.13” 



9 Precision limit—frequency domain method

I Frequency domain

I Measure the spin tune shift when EDM precession is reversed

I Relies on phase-locked Stern-Gerlach polarimetry

I Like the Ramsey neutron EDM method.

I This polarimetry has not yet been proven to work.

I This method cannot be counted on until resonant
polarimetry has been shown to be practical.

particle |delec| current excess fractional error after 104 roll reversal
upper limit cycles per pair pairs of runs error

e-cm of 1000 s runs e-cm e-cm

neutron 3× 10−26

proton 8× 10−25 ±8× 103 ±10−30 ±10−30

electron 10−28 ±1 ±10−30 ±10−30



10 Achievable precision (assuming perfect phase-lock)

I EDM in units of (nominal value) 10−29 e-cm ≡ d̃
I 2 x EDM(nominal)/MDM precession rate ratio:

2η(e) = 0.92× 10−15 ≈ 10−15

I duration of each one of a pair of runs = Trun

I smallest detectable fraction of a cycle = ηfringe = 0.001

NFF =EDM induced fractional fringe shift per pair of runs

=
(2η(e))d̃

ηfringe
hr f0Trun

(
e.g.≈ d̃

10−15 · 10 · 107 · 103

10−3
= 0.1d̃

)
,

Assumed roll rate reversal error : ±ηrev. e.g.
= 10−10

σrev.
FF = roll reversal error measured in fractional fringes

=± f rollηrev.Trun

ηfringe

(
e.g.≈ ±102 · 10−10 · 103

10−3
= 10−2

)
.



11 Design requirements for proton EDM storage ring, e.g. at CERN

I Measuring the proton electric dipole moment (EDM) requires an
electrostatic storage ring in which 233 MeV, frozen spin polarized
protons can be stored for an hour or longer without depolarization.

I The design orbit consists of multiple electrostatic circular arcs
I Electric breakdown limits bending radius, e.g. r0 > 40 m
I For longest spin coherence time (SCT) and for best systematic error

reduction the focusing needs to be as weak as possible
I This is a “worst case” condition for electric and magnetic storage rings

to differ (because kinetic energy depends on electric potential energy)
I To reduce emittance dilution by intrabeam scattering (IBS) the ring

needs to operate “below transition”

I Ring must be accurately clockwise/counter-clockwise symmetric
I Accurately symmetric injection lines are required.
I Initially single beams would be stored, with run-to-run alternation of

circulation directions.
I Ultimate reduction of systematic error will require simultaneously

counter-circulating beams.



12

“Magic” central design parameters for frozen spin proton
operation:

c = 2.99792458e8 m/s

mpc2 = 0.93827231 GeV
G = 1.7928474

g = 2G + 2 = 5.5856948

γ0 = 1.248107349

E = γ0mpc2 = 1.171064565 GeV

K 0 = E −mpc2 = 0.232792255 GeV
p0c = 0.7007405278 GeV
β0 = 0.5983790721



13 *Weak-weaker WW-AG-CF focusing* ring design

I An ultraweak focusing, “weak/weaker, alternating-gradient,
combined-function” (WW-AG-CF) electric storage ring is described.

I All-electric bending fields exist in the tall slender gaps between inner and
outer, vertically-plane, horizontally-curved electrodes.
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Figure: Above: Electrode edge shaping to maximize uniform field volume; Below
left: bulb-corrected field uniformity; Below right: uncorrected field intensity. Only
the top 5 cm is shown. The electrode height can be incresed arbitrarily without
altering the electric field.



15 I The radial electric field dependence is

E = Er ∼ 1

r1+m
,

where, ideally for spin decoherence, the field index m would be
exactly m = 0.

I m = 0 (pure-cylindrical) field produces horizontal bending as
well as horizontal “geometric” focusing, but no vertical force

I (Not quite parallel) electrodes, with m alternating between
m = −0.002 and m = +0.002 provides net vertical focusing.

I Not “strong focusing”, this is “weak-weaker” WW-AG-CF
focusing, just barely strong enough to keep particles captured
vertically.

I Beam distributions are highly asymmetric, much higher than
wide, matching the good field storage ring aperture.



16
I (Not counting trims, nor slanted poles) there are no quadrupoles
I This is favorable for systematic electric dipole moment (EDM) error

reduction. There is no spin decoherence (for frozen spins) in a pure
m = 0 field — explained later

I The average particle speeds in drift sections do not need to be
magic—because there is no spin precession in drift sections.

I Still, the dependence of revolution period on momentum offset is very
small, making the synchrotron oscillation frequency small, and not
necessarily favorable as regards being above or below transition.

I IBS stability requires below-transition operation, whic requires quite
long total drift length.



17 Total drift length condition for below-transition operation

I As with race horses, faster particles can lose ground in the
curves but still catch up in the straightaways.

I To run “below transition”, the sum of all drift lengths has to
exceed Ltrans.

D , given in terms of dispersion DO by

Ltrans.
D = 2πDO β0γ0 ≈ 2πDO .



18 Longitudinal γ variation on off-momentum orbits
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Figure: Dependence of deviation from “magic” ∆γ(s) = γ(s)− γ0 on
longitudinal position s, for off-momentum closed orbits (circular arcs within
bends) just touching inner or outer electrodes at x = ±0.015 m. Notice the
anomalous cross-overs in m > 0 bends.



19 Off-momentum closed orbits

I For central radius r0 the off-momentum radius is determined by
Newton’s centripetal force law

eE0

(
r0
r

)1+m

=
βpc

r
also
=

mpc2

r

(
γ − 1

γ

)
,

where r = r0 + xD is the radius of an off-momentum arc of a circle
with the same center.

I For m 6= 0, r cancels, and the radius is indeterminant.
I A powerful coordinate transformation is:

ξ =
x

r
=

x

r0 + x

I For our typical values (x = 1 cm, r0 = 40 m), for all practical
purposes, ξ can simply be thought of as x in units of r0..



20 I The electric field is then

E(ξ) = −E0 (1− ξ)1+m r̂,

I Off-momentum closed orbits are “parallel” arcs of radius
r = r0 + xD inside a bend, entering and exiting at right angles
to straight line orbits displaced also by xD .

I The relativistic gamma factor on the orbit (inside) is γI ,
which satisfies

eE0r0 (1− ξ)m = βI pI c = mpc2
(
γI − 1

γI

)
,

I This is a quadratic equation for γI inside bend.

I For r 6= r0, because of the change in electric potential at the
ends of a bend element, the gamma factor outside has a
different value, γO .



21

I For m 6= 0 the orbit determination is no longer degenerate.

I Solving the quadratic equation for γI , the gamma factor is
given by the positive root;

γI (ξ) =
E0r0(1− ξ)m

2mpc2/e
+

√(
E0r0(1− ξ)m

2mpc2/e

)2

+ 1.

I This function is plotted next for m = ±0.2.
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Figure: This figure shows a “dispersion plot” of “inside” gamma value γI plotted
vs ξ. The curves intersect at the magic value γI = 1.248107. Because
dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum, the
fractional spreads in velocity, momentum, and gamma are all comparable in
value—in this case about ±2× 10−5. This figure may be confusing, since it is
rotated by 90 degrees relative to conventional dispersion plots. For this reason
one should also study the following plot, which is identical except for being
rotated, and is annotated as an aid to comprehension. Subsequent plots have the
present orientation, however.
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Figure 2: Identical “Dispersion plots”, but with the upper rotated into customary orientation
and annotated as an aid to comprehension (though momentum then decreases from left to
right). Subsequent plots will have the lower orientation.. Dependence of “inside” gamma
value γI on ξ = x/r for m = −0.2 and m = 0.2. The curves intersect at the magic value
γI = 1.248107. Because dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum,
the fractional spreads in velocity, momentum, and gamma are all comparable in value—in
this case about ±2× 10−5.

14

outer

electrode

inner

electrode momentum
increasing

Figure: This plot is identical to the previous one except for being rotated by 90
degrees into conventional orientation (except momentum increases from right to
left). It shows the dependence of ξ = x/r vs “inside” gamma value γI , for
m = −0.2 and m = 0.2. Note that, for m < 0 larger momentum causes larger
radius while, for m > 0 the opposite is true. What is striking is that the slope is
opposite for m > 0 and m < 0. This is “anomalous”.



24 Potential energy

I Electric potential is defined to vanish on the design orbit
I Expressed as power series in ξ, the electric potential is

V (r) = −E0r0
m

(
(1− ξ)m − 1

)
= E0r0

(
ξ +

1−m

2
ξ2 +

(1−m)(2−m)

6
ξ3 . . .

)
. (1)

I This simplifies spectacularly for the Kepler m=1 case. But we are
concerned with the small |m| << 1 case.

I As a proton orbit passes at right angles from outside to inside a bend
element, its total energy is conserved;

γO(ξ) =
EO

mpc2
=
E I

mpc2

= γI (ξ) +
E0r0

mpc2/e

(
ξ +

1−m

2
ξ2 +

(1−m)(2−m)

6
ξ3 . . .

)
.

I Plots of γO(ξ) for m = ±0.2 are shown next
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Figure: “Outside” dispersion plots. Note that dispersion slopes are the same for
m < 0 and m > 0. Dependence of “outside” gamma value γO on ξ = x/r for
m = −0.2 and m = 0.2. Because dγ/dβ = βγ3 is equal to about 1.17 at the
magic proton momentum, the fractional spreads in velocity, momentum, and
gamma are all comparable in value—in this case about 2× 10−4. The fractional
spreads are an of magnitude greater outside than inside. This is helpful.



26 Ultraweak focusing
I Figures so far have had m = ±0.2, which is actually strong focusing.
I From now on we assume ultraweak focusing with sector values

alternating between m = −0.002 and m = 0.002. The dispersion
plots are repeated.

Figure: Dependence of “inside” gamma value γI on ξ = x/r for m = −0.002
and m = 0.002. The curves intersect at the magic value γI = 1.248107349.
Because dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum,
the fractional spreads in velocity, momentum, and gamma are all comparable in
value—in this case about ±3× 10−7—a gloriously small range.
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Figure: Dependence of “outside” gamma value γO on ξ = x/r for m = −0.002
and m = 0.002. Because dγ/dβ = βγ3 is equal to about 1.17 at the magic
proton momentum, the fractional spreads in velocity, momentum, and gamma are
all comparable in value—in this case about ±2× 10−4. The fractional spreads are
about three orders of magnitude greater outside than inside.



28 Parameter table

Table: Parameters for WW-AG-CF proton EDM lattice

parameter symbol unit value

arcs 2
cells/arc Ncell 20

bend radius r0 m 40.0
drift length LD m 4.0

circumference C m 411.327
field index m ±0.002

horizontal beta βx m 40
vertical beta βy m 1620

(outside) dispersion DO
x m 24

horizontal tune Qx 1.640
vertical tune Qy 0.04045

number of protons Np 2× 1010

95% horz. emittance εx µm 3
95% vert. emittance εy µm 1

(outside) mom. spread ∆pO/p0 ±2× 10−4

(inside) mom. spread ∆pI/p0 ±2× 10−7



29 Lattice Functions

Figure: Horizontal beta function βx(s), plotted for two adjacent cells.
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Figure: Vertical beta function βy (s), plotted for two adjacent cells. For
this case the total circumference is 411.3 m and the total drift length is
160.0 m. Extended decimal places exhibit the extreme uniformity.
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Figure: Horizontal beta function βx(s), plotted for full ring. For this case
the total circumference is 411.3 m and the total drift length is
LD=160.0 m. Since this total drift length exceeds Ltrans.

D , the ring will be
“below transition”, as regards synchrotron oscillations.
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Figure: Vertical beta function βy (s), plotted for full ring. For this case
the total circumference is 411.3 m and the total drift length is
LD=160.0 m. Since this total drift length exceeds Ltrans.

D , the ring will be
“below transition”, as regards synchrotron oscillations.



33

Figure: Outside dispersion function DO(s), plotted for full ring. For this
case the total circumference is 411.3 m and the total drift length is
160.0 m. Extended decimal places exhibit the extreme uniformity.
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Figure: Outside dispersion function slope DO(s)
′
, plotted for full ring.

For this case the total circumference is 411.3 m and the total drift length
is 160.0 m.
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Figure: Transverse tune advances. The full lattice tunes are Qx = 1.640
and Qy = 0.04046. Even smaller horizontal tune (for improved
self-magnetometry) can be provided by trim quadrupoles, rather than by
electrode shape or voltage adjustment, even consistent with zero net
quadrupole focusing, but with octupole focusing for net vertical stability.



36 *Self-magnetometry*

I The leading source of systematic error in the EDM
measurement is unintentional, unknown, radial magnetic
fields.

I Acting on MDM, they cause spurious precession mimicking
EDM-induced precession.

I (Apart from eliminating radial magnetic field) the only
protection is to measure the differential beam displcement of
counter-circulating beams.

I Greatest sensitivity requires weakest verticql focusing.

I i.e. extremely large value for βy .

I or even octupole-only vertical focusing.



37 Spin decoherence

In calculating spin decoherence we need to account for the transverse
position oscillations accompanying potential energy variation. For
simplicity we assume the lattice is uniform, with no drift regions.
The spin precession angle α, relative to the proton direction, evolves as

dα

dt
=

eE (x)

mpc

(
gβ(x)

2
− 1

β(x)

)
.

The variables β, γ, and E in this equation depend on x (and also, though
far less so, on y) . But angular momentum L is conserved, and

dθ

dt
=

L

γmpr2
;

(which is valid in bend regions, but would not be in drift regions, where r
becomes ambiguous). In this equation the angular momentum L is a
constant of the motion (because the force is radial) but γ and r = r0 + x
depend on x . Combining the two previous equations,

dα

dθ
=

eE (x)(r0 + x)2

Lcβ(x)

((g

2
− 1
)
γ(x)− g/2

γ(x)

)
,



38 I To find the evolution of α over long times, for an individual particle,
we need to average this equation over betatron and synchrotron
oscillations.

I What makes this averaging difficult is the fact that the final factor
has, intentionally, been “magically” arranged to cancel for the central,
design particle.

I The initial factor, though not constant, varies over a quite small
range. A promising approximation scheme for this factor is to neglect
the (small) rapidly oscillating betatron contibution to x coming from
the betatron oscillation, and retain only the off-momentum part
x = Dx∆γO associated with the slowly varying synchrotron
oscillation.

I Then the average excess precession for an off-momentum particle is〈dα

dθ

〉
(γO) =

eE (Dx∆γO)(r0 + Dx∆γO)2

Lcβ(Dx∆γO)

〈(g

2
− 1
)
γ(x)− g/2

γ(x)

〉
.

I The superscript “I” on γ(x) is now just implicit in the final factor
since only “inside” motion is under discussion.

I If the average of 〈γ〉 were the inverse of 〈1/γ〉 the averaging over
horizontal betatron oscillation would be easy. But this is not true.

I However the factorization has allowed the averaging over γO to be
deferred.



39 Virial theorem decoherence calculation

I The virial theorem can be used to perform 3D averages over
multiparticle systems subject to central forces.

I Also, though our electric field is centrally directed within any single
deflecting element, because of drift regions in the lattice, the centers
of the various deflection elements do not coincide.

I We can therefore calculate only the spin decoherence applicable to
passage through the bend regions, which is where the overwhelmingly
dominant part of the momentum evolution occurs.

I The independent variables θ and t are very nearly, but not exactly
proportional to each other instantaneously, so averages with respect
to one or the other are not necessarily identically instantaneously.

I However, with bunched beams over long times, θ and t are strictly
proportional (on the average) and the two forms of averaging have to
be essentially equivalent.

I Because there are so many variants of “the virial theorem” it is easier
to derive it from scratch than to copy it from one of many possible
references.



40 The “virial” G is defined, in terms of radius vector r and momentum p, by

G = r · p

Our electric field is

E = −E0

( r0
r

)1+m
r̂,

and Newton’s law gives
dp

dt
= eE.

In a bending element the time rate of change of G is given by

dG

dt

∣∣∣
bend

= ṙ · p + r · ṗ

= mpγv2 − eE0
r1+m
0

rm

= mpc2γ −mpc2 1

γ
− eE0r0

rm
0

rm
.

Averaging over time, presuming bounded motion, and therefore requiring
〈dG/dt〉 to vanish, one obtains〈1

γ

〉
= 〈γ〉 − E0r0

mpc2/e

〈
rm
0

rm

〉
.

This provides the needed relation between 〈γ〉 and 〈1/γ〉.



41 Applying this result to perform the (time)-average yields〈dα

dθ

〉
=

eE (Dx∆γO)(r0 + Dx∆γO)2

Lcβ(Dx∆γO)

(
− 〈γ〉+

g

2

E0r0
mpc2/e

〈
rm
0

rm

〉)
.

For specializing this result to frozen spin γ = γ0 operation, the following
formulas, can be employed:

γ(x) ≡ γ0 + ∆γ,

E0r0
mpc2/e

= γ0 − 1

γ0
,

rm
0

rm
≈ 1−m

x

r0
,

γ0 =
g

2

(
γ0 − 1

γ0

)
.

I These formulas assume the beam centroid energy and the storage ring
lattice are exactly “magic”. If not true the average spin orientation
would change systematically. What is being calculated is the spin
orientation spreading.

I For perfectly sinusoidal synchrotron oscilations, the initial factor can
be replaced by its average value. This yields〈dα

dθ

〉
≈ − E0r2

0

β0Lc/e

(
〈∆γI 〉+

g

2

m

r0

(
γ0 − 1

γ0

)
〈x〉
)
.

(The superscript “I” has been restored as a reminder that ∆γI is
evaluated within bend elements, as contrasted to within drift
sections.) The numerical value of the leading factor is about 1.



42 I Copying the final equation from the previous slide, evaluating the
leading factor on the design orbit, and dropping the negative sign, the
decoherence rate is〈dα

dθ

〉
= 〈∆γI 〉+

g

2
m
(
γ0 − 1

γ0

) 〈x〉
r0
.

I Typical values for the relevant quantities are

m = ±0.002,

x

r0
=

0.01

40
≈ 3× 10−4

γI = 3× 10−7

I Small as they are, to linear approximation each of these averages to
zero. To following order〈dα

dθ

〉
∼ (3× 10−7)2 +

g

2
4× 10−6

(
γ0 − 1

γ0

)
(3× 10−4)2.

I Decoherence in bend fringe fields is likely to be greater than this, but
it also cancels if care is taken to assure linear synchrotorn oscillations.



43 I We have shown, therefore, for the WW-AG-CF lattice, that
decoherence in the bend regions can be neglected even in the
presence of horizontal betatron oscillations,

I We have previously argued that decoherence associated with vertical
betatron oscillation can also be neglected.

I As already mentioned, very long spin coherence times have been
demonstrated for deuterons in the COSY storage ring in Juelich,
Germany, though only after quite delicate adjustment of nonlinear
elements in the ring. And COSY is a strong focusing ring for which
spin decoherence can be expected to be far greater than in our weak
focusing WW-AG-CF lattice.

I If beam bunches can for survive for days their polarization states can
probably survive as well.

I Kepler, Newton, 1650, Lagrange 1800, virial averaging: calculation
has beem described in several slides

I Modern computer programs: (unsuccessful) calculation has taken 8
years and counting

I What gives Newton, Lagrange the advantage?



44 Current situation in Juelich

I Many significant advances:
I Highly polarized beam
I electron cooling
I stochastic cooling
I phase locked beam polarization

I They have a 200 m magnetic ring and have demonstrated the
ability to measure proton EDM to quite high accuracy exceppt

I What they need is a 450 electric ring



45 The Brookhaven “AGS-Analogue” electrostatic ring

Figure: The 10 MeV “AGS-Analogue” elctrostatic ring has been the only
relativistic all-electric ring. It was built in 1954, for U.S.$600,000. It could
(almost) have been used to store 15 MeV frozen spin electrons. It was the first
alternating gradient ring, the first to produce a “FODO neck-tie diagram”, and
the first to demonstrate passage through transition (which was its raison d’être).

I AGS Analogue, 1952
conception, design, constructiom, do the physics, decommission: 5
years

I EDM ring
conception, design: 8 years and counting

I What gave AGS Analogue the advantage?



46 Solution?

I Smash all computers—probably a good idea, but has to be
rejected—it doesn’t help with EDM experiment

I Computers make us dumber—probably—but that just makes
EDM experiment harder

I Computers damage our spirit of adventure and
self-confidence— surely this is the correct exaplanation.



47 Coincidences

Experiments that “could not be done”

I Aachen: first RF accelerator
I Franfurt: Stern-Gerlach experiment
I Bonn: neutron storage ring
I Juelich: phase-locked beam polarization

Coincidence? all in the “same” place—central Rhine—must be the water

I Should be designated “Cultural heritage treasure”
I Physics is “culture”
I Politicians can understand this
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