Preliminary results of MD2201 (FILL6216) and MD2209 (FILL6195)

FILL6195: https://cernbox.cern.ch/index.php/s/WdGB5FggrQT7tPA FILL6216: https://cernbox.cern.ch/index.php/s/WdGB5FggrQT7tPA
K. Skoufaris, Y. Papaphilippou, A. Rossi, S. Fartoukh, G. Iadarola, D.

Pellegrini, K. Karastatis, A. Poyet, G. Sterbini, S. Papadopoulou, M. Fitterer, M. Solfaroli, M. Pojer, K. Fuchsberger, M. Albert, G.-H. Hemelsoet, M. Hostettler, B. Salvachua, L. Carver, N. Fuster, S. Redaelli, M. Gonzales, G. Trad, M. Gasior, S. Kostoglou, C. Zamatzas, A. Gorzawski, D. Valuch, E. Effinger, D. Mirarchi, R. Tomas, and a many more.

A snapshot of the beam modes

AIM: evaluate the BB long range effects as function of the crossing angle and bunch intensity for the BCMS and the 8b4e with ATS optics (40 cm).

In the past several MDs (e.g. MD 1429) to study these important effect. This year available the orchestration of the crossing angle scan developed by OP: very smooth running.

Filling schemes

BB matrix

MD2209, FILL6195-13 September 2017

BB matrix

MD2209, FILL6195-13 September 2017

MD2201, FILL6216-17 September 2017

Beam intensities

Beam intensities

Beam intensities

MD2209, FILL6195-13 September 2017

Crossing angle

Effective cross-section

Effective cross-section

Effective cross-section

Summary of the MD

Beam 1

Beam 1

Summary of the MD

Beam 2

Summary of the MD

Summary of the MD

Bunch 785 of B2, $\sigma_{E F F}=97 \mathrm{mbarn}$

BACKUP SLIDES

Luminosity ratio (II)

MD2201

- AIM: evaluate the BB long range effects as function of the crossing angle for the BCMS and the 8b4e with ATS optics (40 cm).
- In the past several MDs (e.g. MD 1429) to study these important effect. This year available the orchestration of the crossing angle scan developed by OP.
- 6 h: from 2am to 8 am: very smooth running.

MD2201, FILL6216-17 September 2017

Crossing angle scan

- Systematic scans of crossing angle (from 150 to 90 urad).
- For each step: Lumi + Q optimization, emittance scan.
- At 90 urad, octupoles and chromaticity were reduced.

Preliminary results

- Main observable adopted is the pp effective cross section.

Preliminary results

- Effect of the octupoles and chromaticity on B1.

Preliminary results

- B2, as observed in the past, much more resilient to LRBB.

Tune trims

Chromaticity trims

Lumi scans

Octupoles

Luminosity ratio (I)

Summary plot on B1

- 8b4e behaves worst that BCMS for the same number of the BBLR (in absolute behaves better, since less BBLR).
- Bunches with the same number of BBLRs show differences...

Summary plot on B2

- B2, as observed in the past, much more resilient to LRBB.

Summary of the PRELIMINARY analysis

- MD2201 ran smoothly.
- The collection of data confirms and completes the past observations.
- Further analysis on going with particular emphasis on the profiles evolution
- Difference of the 8b4e and BCMS
- Difference of lifetime for bunches with the same number of BBLR
- B1/2 difference still to be understood.

Thank you for your attention.

BACK-UP slides

Intensity evolution

Mean bunch length

Tune trims

Chromaticity trims

Position scans

