

Status of the Design Study

Richard Catherall EN-STI-RBS

Outline

- Introduction
- Project Breakdown Structure
- Target Area Upgrade: a change in the PBS
- ITN Call3 (Marie Curie Fellowship)
- Progress on drawings
- Fluka simulations: a step forward
- Timeline

Project Breakdown Structure

- Three tier structure used for PBS and drawings
- ▶ L Layout
 - T- target area
 - X experimental area
 - J Class A lab
 - S Shielding
 - ➤ G Geodesy and Survey
 - B Beam Instrumentation
 - E Electrical Power
 - C Control
 - ➤ F Fluids
 - T Targets and Front ends
 - > I Injection and transfer lines
 - K Civil engineering
 - H Handling, mechanics, supports
 - M Magnetic elements
 - P Personnel safety and radiation protection
 - U Ventilation and air conditioning
 - V Vacuum equipments
 - A Access system
 - Z Electrostatic systems
 - D Management
 - W Waste disposal

- Examples of PBS
- ▶ LTS
 - Layout, target area, shielding
- ▶ LTG
 - Layout, target area, survey...etc, etc.
- Examples of drawing codes
- ISL____0001
- > ISLLT
 - > ISL ISOLDE
 - L Layout
 - T target area
 - V Vacuum systems
 - X Exhaust
 - T Tanks
 - > 0001 number 1
- Target Code example
- ISLTFV__0001

Project Breakdown Structure

5.0 Target Stud	ay .		
	5.1 Target desi	gn	
	-	5.1.1 Target Material	
		5.1.2 Target Design	
		5.1.3 Target handling and	
		storage	
	5.2 Front ends		
		5.2.1 HV and high current	
		systems	
		5.2.2 Extraction optics	
		5.2.3 FE design	
	5.3 Beam diagr	nostics	
6.0 target Area	a and Class-A lab Integration		
	6.1 Layout upg	rade	
	6.2 Cooling and Ventilation		
	6.3 Electrical sy	ystems	
	6.4 Vacuum		
	6.5 Survey		
	6.6 Civil engine	eering	
	6.7LL controls		
7.0 Injection as	nd beam prepar	ation	
	7.1 Beam line	3	
	7.2 Off line sep	parator	
	7.3 Separator a	areas	
		7.3.1 HRS magnet	
		7.3.2. RFQ cooler	
		7.3.3 Pre Separator	
	7.4 Experiment	t Hall	
	7.5 Beam lines		
8.0 Safety			
	8.1 Radioprote	ction	
		8.1.1 Linac	
		8.1.2 Design study	
	8.2 Safety		
	8.3 Access syst	tem	
	8.4 Fire detector	or	

- Target area Upgrade Project
- 3.5 MCHF accorded by CERN management
- Starting in 2010
- Identified the urgent need to upgrade the target area.
- Will have an impact on the current PBS

ITN Call3 (Marie Curie Fellowship)

•	5.0 Target Design (EN/STI)	WP Holder	Fellows	
	5.1.1 Target Material	T. Stora	1	
	5.1.2 Target Design	T. Stora/V. Vlachoudis	2	
•	5.2 Front ends (TE/ABT & EN/STI)			
	 5.2.1 HV and high current systems 	T. Fowler	1	
	5.2.2 Extraction optics &			
	 5.2.3 FE design 	S. Marzari	1	
•	 6.0 target Area and Class-A lab Integration 			
	(EN/CV & TE/VSC & EN/STI)			
	 6.2 & 3.2 Cooling and Ventilation 	S. Deleval	1	
	6.4 Vacuum	G. Vandoni	1	
	6.7 LL controls	A. Masi	1	
•	7.0 Injection and beam preparation			
	(EN/STI & BE/ABP)			
	7.2 Off line separator &			
	7.3.1 HRS magnet	T. Giles	1	
	 7.3.2. RFQ cooler & 			
	7.3.3 Pre Separator	T. Giles	1	
	 7.5 Beam Lines (REX-EBIS studies) 	F. Wenander	1	
•	8.0 Safety RP (DG/SCR)			
	8.1.1 Linac			
	8.1.2 Design study	T. Otto	2	
		Total	13 / year for 3 years	

Drawings

- A tremendous effort has been spent on improving the drawings of the ISOLDE facility throughout 2009
- Starting point for all future developments
- Catia models- CERN standards

Drawings

- Derived from laser scan and photography limited access
- Improved up-to-date detail
- Used for future projections with the HIE-Energy subproject
- Improved geometries for Fluka by A. Leyko

Fluka – a quick reminder

- 2007 D. Hovarth looked mainly at the air activation due to secondary particles
- The need for a better geometry was identified.
 - Especially for the experiment hall
- A simple model of the target shielding was initiated.

Fluka Simulations: a step forward

- Improved geometry for Fluka simulations
- Different colours represent different materials
- First steps in defining shielding requirements for HIE-Intensity ISOLDE
- GPS Neutron Fluence at target height
- 1 pulse at 1E+13 protons
- Need to run further simulations
- Tools are available

Special thanks to Agnieszka Leyko:

Report: Radiation Study for the ISOLDE Experimental Hall

Timeline: from a Design Study approach

 Allocation of Resources Design • 2011? Study Study Target Area Upgrade