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A collection of the RILIS critical
parameters

Universality: most part of the periodic table elements can be ionized
ngh 1onization efﬁciency for isotopes and nuclear isomers

ngh 1onization SClGCtiVity for isobars, isotopes and nuclear isomers

In-source laser Spectroscopy: study of radioactive atoms with
ultra-high sensitivity

Fast changing of 1on beam structure: isobaric or isomeric
In-source preparation of polarized nuclear: in the future

Simplicity of RILIS components are placed in the radioactive

region m=) Jow servicing costs for RILIS over a plasma ion source if high
current proton beams are used



Selectivity of RILIS

Two basic factors define the RILIS selectivity:

LASER IONIZATION of studied (wanted) atoms and

SURFACE IONIZATION of interfering (unwanted) atoms



Surface lonization of Atoms

Langmuir
equation

W, - the 10nization potential of atoms

¢ - the work function of the electron emitting surface



Wall sticking times

Frenkel 1/t,— frequency factor
E, - interaction energy

equatlon of the atom with the surface

TEMPERATURE, °C The number of collisions

of the atom with a wall of
the RILIS ionizer prior to
it fly out is

S

=nDL
=41./D
Spoe = TD4

wall

L=3cm, D=3 mm
(length and diameter of the
ionizer)

4 N=40
© 27" Lifetimes of the Sc, Y, Zr, Hf and some lanthanide atoms
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Selectivity of RILIS can be increased considerably providing

laser produced ions are separated from thermal ions

Tions creation time — Vlaser pulse duration T laser pulse-repetition interval

—1 < >

N A A A

Maximum RILIS selectivity, which can be reached by

laser ions separation from thermal ions, is equal to S=T/ U R—"

flaser = 104 ppS S ~ 10000
T =1/, = 100 ps It makes sense to hunt for this number
Tions = Taser =10 ns



Time-of-flight compression
of RILIS ion pulses

space focus
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lon peak width

Tion peak ~T

spatial distribution + Tturn-around




Broadening of ion pulses by initial thermal
energy distributions of ions

2v,m
T : =
turn-around time eE




Experimental Setup

solid state L
key
Ton =1 =100 ys copper block channeltron
L =30 mm
atomic beam

Ta

i

Ta-lineq graphite type
D43 [ = 30 mm

Voltage = 75 3 V

Ta



Time-of-flight mass spectrum
of Li, Na, Kand Tm

current generator triggering pulse

photodiode response on the laser
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Subdoppler Velocity Selective
Resonance lonization Spectroscopy

detector n. Tturn-around time
1
plane
0]
laser beam t
A(‘)laser ~ A(‘)D e i H A(JL)D =~ 21(1_)0
The laser frequency is fixed
laser beam Wiaser — W1 = KU, Wger — W, = KU,
A(Dlaser << A(DD
Isotope 1 Isotope 2
n, Tisotope

I

w-w, =kv 0 Y.

k=w/c

L is the velocity * The duration of the ion peak T,

projection corresponds to the laser line width Aw,
onto the laser axis * The time interval between the ion peaks Ty,

corresponds to the isotope shift Au)isotope



Conclusions

The Resonant lonization Laser lon Source, RILIS,
can operate in the time-of-flight mode

RILIS operating in the time-of-flight mode has the
length rather small, = 60 mm. Therefore it can be
installed in front of the mass-separator

For Sn it is possible to obtain the ion pulses with
duration below 4 us down to 500 ns

Selectivity of ISOLDE-RILIS of Sn can be increased
by a factor of 25 or more applying this time-of-flight
technique



The need for
selectivity
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Efficiency of RILIS

0 n d outgoing flow of atoms
hole 1
J atoms § (dhole/ L)nOVOShole
n
187)) outgoing flow of ions

Jions — 5 LsholenO f ><11ph0t.><nc0nf.><r|. XN -

\ 4

Jions 3
NRILIS ~ T i(sz/ Vodhole) X Mphot. Nconf. -

J atoms
1s cavity amplification factor \Y |
L is cavity length (3 cm)
d is cavity diameter (3 mm)
n, is isotope density Neons. IS €fficiency of ions confinement by thermal plasma
v, is thermal velocity of isotopes (= 10° cm/s) Nonot, 1S €fficiency of laser photoionization

f is laser pulse repetition rate (10 pps) Nrus 1S efficiency of RILIS



Efficiency of RILIS

Ji 3
— ions ol 2
T]RILIS ~ J B 2(L f/ VOdhole) T'lphotoionization T‘lconﬁnemen‘[
atoms
is M ( “Be) = 3
cavity amplification factor M M (13Yb) = 10
\Y
— — 0
nphotoionization = 0.2 1]RILIS =100%
Nconfinement =1

A higher approximation is

Jions

EXPERIMENT

Nriws (T1) = 30%  (ISOLDE, L = 3cm)
Nrs (HO) = 40%  (HRIBF, L = 8 cm) Jions T Jatoms

NRILIS ~




Overall RILIS efficiencies for elements
avallable at 1ISOLDE
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The plot shows the temperature of a graphite
pipe In relation to the voltage drop produced by
the DC current
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The plot shows the turn-around time !

Vo
INn relation to the VOltage drOp Tturn-around time ~ o
across the RILIS ionizer (L = 30 mm)
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OVERVIEW of CHEMICAL ELEMENTS

which are available with RILIS,
which have been ionized by the use of high pulse repetition rate frequency-tuned lasers,
which can be ionized by the use of high pulse repetition rate frequency-tuned lasers,

which may be ionized by the use of high pulse repetition rate frequency-tuned lasers
following atomic level structure identification

there is no lasers
at present
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