

Ion Production Needs for Beta Beams

Elena Wildner, CERN

ISOLDE Workshop and Users meeting 2009

Acknowledgements

Work on beta beams:

FP6 "Research Infrastructure Action - Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS

and

FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

M. Benedikt, FP6 Leader

M. Lindroos

All contributing institutes and collaborators

Outline

- The Beta Beam Concept
- A Beta Beam Scenario
- Ion Production for neutrino beams
- Intensities
- Conclusion

Beta-beams, recall

Aim: production of (anti-)neutrino beams from the beta decay of radioactive ions circulating in a storage ring

Similar concept to the neutrino factory, but parent particle is a betaactive isotope instead of a muon.

Beta-decay at rest

- v-spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV
- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_v \le 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$
- Pure electron (anti-)neutrino beam!
 - Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
 - Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation
 - Cross-sections of neutrino-nucleus interaction

Choice of radioactive ion species

- Beta-active isotopes
 - Production rates
 - Life time
 - Dangerous rest products
 - Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario
 - In the order of a second
- Low Z preferred
 - Minimize ratio of accelerated mass/charges per neutrino produced
 - One ion produces one neutrino.
 - Reduce space charge problems

The EURISOL scenario^(*) boundaries

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory
- Achieve an annual neutrino rate of
 - 2.9*10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne

top-down approach

The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we will study ⁸Li and ⁸B

(*) FP6 "Research Infrastructure Action - Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS

with Water Cerenkov Detectors

Options for production

- ISOL method at 1-2 GeV protons (200 kW)
 - ~3 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production

Courtesy T Stora

- >1 10¹³ (?) ⁶He per second
- 2 10¹³ ¹⁸Ne per second
- Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Will be studied Within EUROv

Aimed:

He $2.9 \ 10^{18} \ (2.0 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.0 10^{13} /s)

Li 2.9 10¹⁸ (2.0*5)10¹³/s) B 1.1 10¹⁸ (2.0*5)10¹³/s)

B/Li needs several factors more at the production stage due to longer baselines

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas to produce Ne!

New approaches for ion production

Shortfall of Ne & better physics reach led to new ideas:

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

Similar idea:

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

Supersonic gas jet target, stripper and absorber

Studied within Eurov FP7 (*)

(*) FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

- A large proportion of beam particles (⁶Li) will be scattered into the collection device.
- Production of ⁸Li and ⁸B: ⁷Li(d,p) ⁸Li and ⁶Li(³He,n) ⁸B reactions using low energy and low intensity ~ 1nA beams of ⁶Li(4-15 MeV) and ⁷Li(10-25 MeV) hitting the deuteron or ³He target.

Beta Beam scenario EUROnu, FP7

Detector Gran Sasso (~ 5 times higher Q)

The beta-beam in EURONU DS (I)

- Focus on ion production issues
- ⁸Li and ⁸B
 - B is highly reactive and has never been produced as an ISOL beam
 - ⁸Li and ⁶He from spallation neutron reactions
 - Production ring: enhanced direct production
- 18Ne
 - We strongly encourage and work on ¹⁸Ne production and acceleration (⁶He seems good) to complete the study of the EURISOL beta beam scenario
- EC beams: Monochromatic
- EC & beta beams

Intensities

- High-Q (higher neutrino energy E at the same gamma boost)
 - -> longer baselines (L) to get the same E/L

Take into account cross sections for higher energies and smaller fluxes at longer baselines:

Merit factor for an experiment at the atmospheric oscillation maximum: $M = \gamma/Q$

- For higher Q values we need higher intensities for the same E/L: we cannot fully profit of higher production rates
- The increased production needed for High-Q isotopes has to be accelerated throughout the accelerator chain and stored in the decay ring

Increased Physics reach, ¹⁵⁶Yb

- Beta decay and EC with one ion
- Decay time 3.1 s at rest
 - at gamma 166 -> ~500 s
 - at gamma 369 -> ~1000 s
 - EURISOL beta beam gamma 100-> ~ 100 s
- Intensities will have to be ~3 times higher in our decay ring compared to EURISOL scenario (required intensities for B/Li case is 5 time EURISOL intensities)
- Space charge and loss of electrons to be investigated
- Interesting energy-dependence

Bernabeu et al. arXiv:0902.4903v1 [hep-ph] 27 Feb 2009

Conclusions

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
 - First coherent study of a beta-beam facility
 - Top down approach
 - 18Ne shortfall, getting solved?
- A beta-beam facility using ⁸Li and ⁸B (EUROnu)
 - Production of 8B & 8Li a challenge
 - Production of 8B & 8Li at ISOLDE? Other ways?
 - Results by 2012
- Other (complementary) isotopes?

Gamma and decay-ring size, ⁶He

Gamma	Rigidity	Ring length	Dipole Field
	[Tm]	T=5 T	<u>rho=300 m</u>
		<u>f=0.36</u>	Length=6885m
100	938	4916	3.1
150	1404	6421	4.7
200	1867	7917	6.2
350	3277	12474	10.9
500	4678	17000	15.6

Magnet R&D