Beyond mean-field approach to shape coexistence phenomena in the A=60-90 region

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany

- Isospin Symmetry Breaking and Coulomb Energy Differences
- Shape Isomers and Gamow-Teller β decay of rp-process waiting-point nuclei

Nuclei near the N = Z line dominated by the interplay of :

- shape coexistence and mixing
- competition between T=0 and T=1 pairing correlations
- rapid changes with particle number, angular momentum and excitation energy

Self-consistent description of coexistence phenomena based on:

- realistic effective interactions in large model spaces
- beyond mean-field approaches

Complex EXCITED VAMPIR approach

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation

Beyond mean field variational procedure

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$

$$|\psi(F_{1}^{s}); sM \rangle = \frac{\hat{\Theta}_{M0}^{s} |F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

$$|\psi(F_{i}^{s}); sM \rangle = \sum_{j=1}^{i} |\phi(F_{j}^{s}) \rangle \alpha_{j}^{i} \quad \text{for} \quad i = 1, ..., n-1$$

$$|\phi(F_{i}^{s}); sM \rangle = \hat{\Theta}_{M0}^{s} |F_{i}^{s} \rangle$$

$$|\psi(F_{n}^{s}); sM \rangle = \sum_{j=1}^{n-1} |\phi(F_{j}^{s}) \rangle \alpha_{j}^{n} + |\phi(F_{n}^{s}) \rangle \alpha_{n}^{n}$$

$$(H - E^{(n)}N)f^{n} = 0$$

$$(f^{(n)})^{+}Nf^{(n)} = 1$$

$$|\Psi_{\alpha}^{(n)}; sM\rangle = \sum_{i=1}^{n} |\psi_{i}; sM\rangle f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$$

A = 60 - 90 mass region

```
^{40}{
m Ca} - core model space ( \pi, 
u): 1p_{1/2}\ 1p_{3/2}\ 0f_{5/2}\ 0f_{7/2}\ 1d_{5/2}\ 0g_{9/2}
```

(charge-symmetric basis + Coulomb contributions to the π -spe from the core)

extended model space
$$\{ 1d_{3/2} 0g_{7/2} 2s_{1/2} \}$$

renormalized G-matrix (OBEP, Bonn A) (Bonn CD)

- short range Gaussians in the nn, pp, np channels
- monopole shifts:

$$\langle 0g_{9/2}0f; T=0|\hat{G}|0g_{9/2}0f; T=0\rangle$$

 $\langle 1p1d_{5/2}; T=0|\hat{G}|1p1d_{5/2}; T=0\rangle$

Isospin Mixing and Coulomb Energy Differences (CED)

A. M. Hurst et al., Phys. Rev. Lett.98 (2007) 072501 (70Se: No evidence for oblate shapes)

G. de Angelis et al., Eur. Phys. J. A12 (2001) 51 (70Br)

J. Ljungvall et al., Phys. Rev. Lett. 100 (2008) 102502 (70Se: Evidence for oblate shapes)

The amount of mixing for the lowest states in ⁷⁰Se.

$I[\hbar]$	o-mixing	p-mixing
0_{1}^{+}	55%	39%
0_{2}^{+}	39%	54%
0_{3}^{+}		87%
2_{1}^{+}	57%	39%
2_{2}^{+}	41%	58%
2_3^+		92%
4_{1}^{+}	62%	35%
4_{2}^{+}	37%	63%
4_{3}^{+}		80(13)%
6_1^{+}	37%	59%
6_{2}^{+}	61%	37%
6_{3}^{+}	43%	43%
8_{1}^{+}		91%
82+	93%	
83		84(10)%

Spectroscopic Q_2^{sp} (in efm^2) of the lowest three states of spin I of 70 Se (effective charges $e_p=1.2,\ e_n=0.2).$

$I[\hbar]$	I_1	I_2	I_3
2+	4.5	-7.	-43.7
4^{+}	11.5	-16.8	-54.4
6^{+}	-17.5	9.5	-54.2
8+	-64.	52.1	-60.

The amount of mixing for the lowest states in ⁷⁰Br.

$I[\hbar]$	o-mixing	p-mixing
0_{1}^{+}	35%	62%
0_{2}^{+}	59%	34%
0_{+}^{3}		88%
$2_{1}^{+} \ 2_{2}^{+}$	41%	57%
2^{+}_{2}	58%	40%
2_{3}^{+}		94%
4_{1}^{+}	41%	56%
4_{2}^{+}	57%	41%
$4_{1}^{+} \ 4_{2}^{+} \ 4_{3}^{+}$		94%
6_{1}^{+}	20%	76%
6_{2}^{+}	79%	20%
6_{3}^{+}		44(34)(12)%
8_{1}^{+}		89%
8_{2}^{+}	96%	
83+		71(11)(11)%

Spectroscopic Q_2^{sp} (in efm^2) of the lowest three states of spin I of $^{70}{\rm Br}$ (effective charges $e_p=1.2,\,e_n=0.2$).

$I[\hbar]$	I_1	I_2	I_3
2+	-6.4	4.6	-44.6
4+	-9.8	5.2	-60.8
6+	-39.7	33.7	-62.2
8+	-65.5	59.	-71.4

 $B(E2;I\to I-2)$ values (in e^2fm^4) for the lowest two bands of ⁷⁰Se (EXVAM). Strengths for secondary branches are given in parentheses (effective charges $e_p=1.2,\,e_n=0.2$).

	EXVAM		Exp.	(HFB-based-config.mix.)
$I[\hbar]$	$o(p)_1$	$p(o)_2$		(Girod et al.)
2+	492	501 (5)	342 ± 19	549
4^{+}	713	761	370 ± 24	955
6+	779 (62)	792 (33)	530 ± 96	1404
8+	717 (193)	666 (150)		

 $B(E2; I \rightarrow I-2)$ values (in e^2fm^4) for the lowest two bands of ⁷⁰Br (EXVAM). Strengths for secondary branches are given in parentheses (effective charges $e_p = 1.2$, $e_n = 0.2$).

$I[\hbar]$	$p(o)_1$	$o(p)_2$
2+	541	516
4+	775	756
6^{+}	820 (60)	777 (44)
8+	771 (81)	754 (84)

A. Petrovici et al., Phys. Rev. C78 (2008) 064311

Gamow-Teller β decay of the rp-process waiting point ⁶⁸Se

CERN/ISOLDE P. Baumann et al., Phys. Rev. C50 (1994) 1180

$$^{68}Se \rightarrow ^{68}As$$
 $0^{+} \rightarrow 1^{+}$ $Q_{EC} = 4.730 \pm 0.310 \text{ MeV}$

The amount of mixing for the lowest 0^+ states of the 68 Se nucleus (ms3).

$I[\hbar]$	Bonn A o-mixing	p-mixing	Bonn CD o-mixing	p-mixing
0_{1}^{+}	58(2)%	22(10)(4)%	53(2)%	24(11)(4)%
0_{2}^{+}	10(6)%	73(5)(3)%	5(5)%	84(3)%
0_{3}^{+}	16(7)(3)%	38(20)(10)(2)%	26%	32(16)(11)(10)(2)%

$$T_{1/2}^{exp} = 35.5(7) s$$

$$T_{1/2}^{BonnCD} = 33.9 \text{ s}$$

$$T_{1/2}^{BonnA} = 48.5 \text{ s}$$

$$\lambda = \ln 2/K \sum_{i} [(2J_i + 1) e^{-E} i^{/(kT)}] / G(Z,A,T) \sum_{j} B_{ij} \Phi_{ij}$$

i – parent states j – daughter states

$$G(Z,A,T) = \sum_{i} e^{-E_i/(\kappa T)}$$
 (partition function of the parent nucleus)

$$Bij = Bij (GT)$$

 Φ_{ij} – phase space integral

T < 2 GK X-ray bursts

In the astrophysical environment of the X-ray bursts the decay of the isomeric 0⁺ states of ⁶⁸Se will not influence the effective half-life

A. Petrovici et al., Phys. Rev. C80 (2009) 044319

different dimensional model spaces - no quenching

Summary and outlook

- shape mixing and isospin symmetry breaking Coulomb interaction could explain the trends in CED
- self-consistent approach to the Gamow-Teller β decay of the ground state and the lowest shape isomers 0⁺ of ⁶⁸Se to ⁶⁸As gives good agreement with the available data
- at the temperatures of the X-ray bursts the effect of the decay of the lowest isomeric states of ⁶⁸Se will not influence the effective half-life
- quenching is not needed in a beyond mean field description of the influence of shape coexistence and mixing on the Gamow-Teller β decay using a model space with all spin-isospin partners in $0\hbar\omega$ spaces
- in progress: construction of a realistic effective interaction in a larger model space

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Andrei

National Institute for Physics and Nuclear Engineering, Bucharest, Romania